Skip to main content
Log in

Optimization of the Experimental Parameters Affecting the Corrosion Behavior for Mg–Y–Zn–Mn Alloy via Response Surface Methodology

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper optimizes experimental parameters on controlling corrosion performance of the Mg-rare-earth alloys with long period stacking ordered structure using response surface methodology. Different NaCl concentrations, temperatures, and varying pH values are selected as input parameters. The corrosion current density (icorr) and open circuit potential (OCP) are used as the multiple responses to evaluate the corrosion performances. The corrosion surface morphology and corrosion mechanism of the Mg alloys are also investigated by scanning electron microscopy for the optimization. Analysis of variance (ANOVA) has given the impact of individual factors and interactions on the corrosion rate. The results indicated that the three test parameters had significant impacts in controlling the corrosion behavior of Mg alloy. Moreover, the increased NaCl concentration decreased the pitting potential (Epit) of the target materials. Filiform corrosion can be detected in high pH solutions, whereas the matrix suffered from severe dissolution phenomenon in low pH solutions. High temperature aggravated the local destruction and dissolution of the protective film. The interaction of the experimental parameters showed a sizable influence on corrosion performance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Zhao, X. Chen, F. Pan, J. Wang, S. Gao, T. Tu, C. Liu, J. Yao, A. Atrens, J. Mater. Sci. Technol. 35, 142 (2019)

    Google Scholar 

  2. R. Rakesh, S. Bontha, R. Rames, M. Das, V. Balla, Appl. Surf. Sci. 480, 70 (2019)

    Google Scholar 

  3. L. Wang, J. Jiang, A. Ma, Y. Li, D. Song, Metals 7, 324 (2017)

    Google Scholar 

  4. B. Saleh, J. Jiang, R. Fathi, Q. Xu, L. Wang, A. Ma, Arch. Civ. Mech. Eng. 20, 71 (2020)

    Google Scholar 

  5. R. Fathi, A. Ma, B. Saleh, Q. Xu, J. Jiang, Mater. Today Commun. 24, 101169 (2020)

    CAS  Google Scholar 

  6. Y. Wu, C. Liu, H. Liao, J. Jiang, A. Ma, J. Alloy. Compd. 856, 158072 (2021)

    CAS  Google Scholar 

  7. B. Saleh, J. Jiang, Q. Xu, R. Fathi, A. Ma, Y. Li, L. Wang, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00624-w

    Article  Google Scholar 

  8. B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, E. Han, Int. J. Fatigue 120, 46 (2019)

    Google Scholar 

  9. H. Liu, H. Huang, J. Sun, C. Wang, J. Bai, A. Ma, X. Chen, Acta. Metall. Sin. Engl. 32, 269 (2019)

    CAS  Google Scholar 

  10. H. Liu, J. Ju, X. Yang, J. Yan, D. Song, J. Jiang, A. Ma, J. Alloy. Compd. 704, 509 (2017)

    CAS  Google Scholar 

  11. G. Garces, P. Pérez, R. Barea, J. Medina, A. Stark, N. Schell, P. Adeva, Metals 9, 221 (2019)

    CAS  Google Scholar 

  12. C. Ding, X. Hu, H. Shi, W. Gan, K. Wu, X. Wang, J. Magnes. Alloy. (2020). https://doi.org/10.1016/j.jma.2020.05.012

    Article  Google Scholar 

  13. H. Liu, C. Sun, C. Wang, Y. Li, J. Bai, F. Xue, A. Ma, J. Jiang, J. Mater. Sci. Technol. 59, 61 (2020)

    Google Scholar 

  14. K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, T. Nakano, Acta Mater. 163, 226 (2019)

    CAS  Google Scholar 

  15. Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater. Trans. 42, 1172 (2001)

    CAS  Google Scholar 

  16. A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike, J. Mater. Res. 16, 1894 (2001)

    CAS  Google Scholar 

  17. E. Abe, Y. Kawamura, K. Hayashi, A. Inoue, Acta Mater. 50, 3845 (2002)

    CAS  Google Scholar 

  18. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H. Yasuda, Y. Umakoshi, Acta Mater. 58, 6282 (2010)

    CAS  Google Scholar 

  19. Y. Zhu, A. Morton, J. Nie, Acta Mater. 60, 6562 (2012)

    CAS  Google Scholar 

  20. L. Wang, J. Jiang, H. Liu, B. Saleh, A. Ma, J. Magnes. Alloy. 8, 1208 (2020)

    CAS  Google Scholar 

  21. L. Wang, J. Jiang, T. Yuan, Q. Xie, H. Liu, A. Ma, Met. Mater. Int. 26, 551 (2020)

    CAS  Google Scholar 

  22. L. Wang, J. Jiang, B. Saleh, Q. Xie, Q. Xu, H. Liu, A. Ma, Acta. Metall. Sin. Engl. 33, 1180 (2020)

    CAS  Google Scholar 

  23. D. Xu, E. Han, Y. Xu, Prog. Nat. Sci. 26, 117 (2016)

    CAS  Google Scholar 

  24. J. Wang, W. Jiang, Y. Ma, Y. Li, S. Huang, Mater. Chem. Phys. 203, 352 (2018)

    CAS  Google Scholar 

  25. S. Izumi, M. Yamasaki, Y. Kawamura, Mater. Sci. Forum 654656, 767 (2010)

    Google Scholar 

  26. Z. Leng, J. Zhang, T. Yin, L. Zhang, X. Guo, Q. Peng, M. Zhang, R. Wu, J. Mech. Behav. Biomed. 28, 332 (2013)

    CAS  Google Scholar 

  27. M. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50, 3168 (2008)

    CAS  Google Scholar 

  28. G. Song, A. Atrens, D. John, X. Wu, J. Nairn, Corros. Sci. 39, 1981 (1997)

    CAS  Google Scholar 

  29. G. Song, A. Atrens, D. Stjohn, J. Nairn, Y. Li, Corros. Sci. 39, 855 (1997)

    CAS  Google Scholar 

  30. M. Song, R. Zeng, Y. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X. Chen, J. Mater. Sci. Technol. 35, 535 (2019)

    Google Scholar 

  31. J. Liu, L. Yang, C. Zhang, B. Zhang, T. Zhang, Y. Li, K. Wu, F. Wang, J. Alloy. Compd. 782, 648 (2019)

    CAS  Google Scholar 

  32. S. Inoue, M. Yamasaki, Y. Kawamura, Corros. Sci. 149, 133 (2019)

    CAS  Google Scholar 

  33. J. Liu, L. Yang, C. Zhang, B. Zhang, T. Zhang, Y. Li, K. Wu, F. Wang, J. Mater. Sci. Technol. 35, 1644 (2019)

    Google Scholar 

  34. L. Bao, Q. Le, Z. Zhang, C. Esling, Mater. Lett. 235, 189 (2019)

    CAS  Google Scholar 

  35. A. Hänzi, I. Gerber, M. Schinhammer, J. Löffler, P. Uggowitzer, Acta Biomater. 6, 1824 (2010)

    Google Scholar 

  36. Z. Huan, M.A. Leeflang, J. Zhou, L.E. Fratila-Apachitei, J. Duszczyk, J. Mater. Sci. Mater. Med. 21, 2623 (2010)

    CAS  Google Scholar 

  37. Z. Cui, X. Li, C. Man, K. Xiao, C. Dong, X. Wang, Z. Liu, J. Mater. Eng. Perform. 24, 2885 (2015)

    CAS  Google Scholar 

  38. T. Zhang, Y. Yang, Y. Shao, G. Meng, F. Wang, Electrochem. Acta 54, 3915 (2009)

    CAS  Google Scholar 

  39. F. Rosalbino, S. De Negri, A. Saccone, E. Angelini, S. Delfino, J. Mater. Sci. Mater. Med. 21, 1091 (2010)

    CAS  Google Scholar 

  40. F. Cao, Z. Shi, G. Song, M. Liu, M. Dargusch, A. Atrens, Corros. Sci. 90, 176 (2015)

    CAS  Google Scholar 

  41. M. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50, 1939 (2008)

    CAS  Google Scholar 

  42. S. Prithivirajan, S. Narendranath, V. Desai, J. Magnes. Alloy. 8, 1128 (2020)

    CAS  Google Scholar 

  43. Z. Shi, F. Cao, G. Song, M. Liu, A. Atrens, Corros. Sci. 76, 98 (2013)

    CAS  Google Scholar 

  44. M. Bezerra, R. Santelli, E. Oliveira, L. Villar, L. Escaleira, Talanta 76, 965 (2008)

    CAS  Google Scholar 

  45. M. Taheri, J. Kish, N. Birbilis, M. Danaie, E. McNally, J. McDermid, Electrochem. Acta 116, 396 (2014)

    CAS  Google Scholar 

  46. M. Pannach, S. Bette, D. Freyer, J. Chem. Eng. Data 62, 1384 (2017)

    CAS  Google Scholar 

  47. G. Song, Adv. Eng. Mater. 7, 563 (2005)

    CAS  Google Scholar 

  48. G. Song, A. Atrens, Adv. Eng. Mater. 9, 177 (2007)

    CAS  Google Scholar 

  49. G. Song, K.A. Unocic, Corros. Sci. 98, 758 (2015)

    CAS  Google Scholar 

  50. Z. Shi, J. Jia, A. Atrens, Corros. Sci. 60, 296 (2012)

    CAS  Google Scholar 

  51. G. Frankel, A. Samaniego, N. Birbilis, Corros. Sci. 70, 104 (2013)

    CAS  Google Scholar 

  52. N. Birbilis, M. Easton, A. Sudholz, S. Zhu, M. Gibson, Corros. Sci. 51, 683 (2009)

    CAS  Google Scholar 

  53. A. Dhanapal, S. Boopathy, V. Balasubramanian, J. Alloy. Compd. 523, 49 (2012)

    CAS  Google Scholar 

  54. S. Feliu, L. Veleva, F. García-Galvan, Metals 9, 591 (2019)

    CAS  Google Scholar 

  55. S. Johnston, Z. Shi, A. Atrens, Corros. Sci. 101, 182 (2015)

    CAS  Google Scholar 

  56. A. Atrens, G. Song, M. Liu, Z. Shi, F. Cao, M. Dargusch, Adv. Eng. Mater. 17, 400 (2015)

    CAS  Google Scholar 

  57. D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian, J. Magnes. Alloy. 2, 36 (2014)

    CAS  Google Scholar 

  58. K. Ralston, G. Williams, N. Birbilis, Corrosion 68, 507 (2012)

    CAS  Google Scholar 

  59. M. Esmaily, M. Shahabi-Navid, J. Svensson, M. Halvarsson, L. Nyborg, Y. Cao, L. Johansson, Corros. Sci. 90, 420 (2015)

    CAS  Google Scholar 

  60. P.M. Natishan, W.E. O'Grady, J. Electrochem. Soc. 161, C421 (2014)

    CAS  Google Scholar 

  61. G. Frankel, J. Electrochem. Soc. 145, 2186 (1998)

    CAS  Google Scholar 

  62. M. Danaie, R. Asmussen, P. Jakupi, D. Shoesmith, G. Botton, Corros. Sci. 77, 151 (2013)

    CAS  Google Scholar 

  63. M. Esmaily, D. Blücher, J. Svensson, M. Halvarsson, L.G. Johansson, Scripta Mater. 115, 91 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Grant Nos. 51774109, 51979099 and 51901068), Natural Science Foundation of Jiangsu Province of China (Grant No. BK 20191303), The Key Research and Development Project of Jiangsu Province of China (Grant No. BE2017148), Public Service Platform Program of Suqian City of China (Grant No. M201614).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinghua Jiang or Huan Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jiang, J., Saleh, B. et al. Optimization of the Experimental Parameters Affecting the Corrosion Behavior for Mg–Y–Zn–Mn Alloy via Response Surface Methodology. Met. Mater. Int. 27, 5095–5107 (2021). https://doi.org/10.1007/s12540-020-00958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00958-5

Keywords

Navigation