Skip to main content
Log in

RSM-based optimization and predictive modelling of the gravimetric corrosion behaviour of solution-treated copper-based shape memory alloy in HCl solution

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Gravimetric weight loss analysis, response surface optimization, and predictive modeling techniques were used to study the corrosion resistance behavior of quenched Cu–Zn–Al alloys in 0.5 m HCl solution. Cu–Zn–Al alloy with 20 and 6 weight percent Zn and Al respectively, was developed by casting method. Prior to being machined to specifications for the corrosion resistance test, the alloy underwent a solutionizing treatment at 850 °C. During the corrosion weight loss measurement, the immersion time and operation temperature ranged from 1 to 4 h and 35 to 60 °C respectively. The corrosion rate of the solution-treated Cu–20Zn–6Al alloy in 0.5 m HCl dropped from 120.189 to 1.603 mm/year with increasing operation temperature and immersion time, according to the corrosion test findings. Thus the Cu–Zn–Al alloy demonstrated strong resistance to corrosion in 0.5 m HCl solution within the boundaries of the considered process parameters. RSM optimization of the experimental process revealed that all the generated model terms are significant with P values less than 0.05. Derived regression model capable of predicting the optimal corrosion rate correlates the corrosion immersion time and operating temperature with the corrosion rate of the solution-treated Cu–20Zn–6Al alloy within the studied conditions. Numerical optimization of the process parameters reveal that at 60 °C and 4 h maximum operating temperature and immersion time, minimal corrosion rate with 0.990 high degree of desirability would be obtained. The as-quenched Cu–20Zn–6Al alloy could be applied in the design of components for elevated temperature acidic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alaneme, K.K., Okotete, E.A.: Reconciling viability and cost-effective shape memory alloy options: a review of copper and iron based shape memory metallic systems. Eng. Sci. Technol. Int. J. (2016). https://doi.org/10.1016/j.jestch.2016.05.010

    Article  Google Scholar 

  2. Sampath, V., Gayathri, S.A.I.V., Srinithi, R.: Experimental and theoretical analyses of transformation temperatures of Cu-based shape memory alloys. Bull. Mater. Sci. (2019). https://doi.org/10.1007/s12034-019-1911-4

    Article  Google Scholar 

  3. Yan, H., Marcoux, Y., Chen, Y.: Cyclic mechanical properties of copper-based shape memory alloys: the effect of strain accommodation at grain boundaries. Int. J. Fatigue 105, 1–6 (2017). https://doi.org/10.1016/j.ijfatigue.2017.08.011

    Article  Google Scholar 

  4. Alaneme, K.K., Umar, S.: Mechanical behaviour and damping properties of Ni modified Cu–Zn–Al shape memory alloys. J. Sci. Adv. Mater. Devices 3, 371–379 (2018). https://doi.org/10.1016/j.jsamd.2018.05.002

    Article  Google Scholar 

  5. Narasimha, G.B., Murigendrappa, S.M.: An investigation on the properties of boron modified Cu–Al–Be polycrystalline shape memory alloys. J. Alloys Compd. 823, 153733 (2020). https://doi.org/10.1016/j.jallcom.2020.153733

    Article  Google Scholar 

  6. Prashantha, S., Shivasiddaramaiah, A.G., Mallikarjun, U.S.: Corrosion behaviour of Cu–Al–Be based shape memory alloy with and without coating. Mater. Today Proc. 17, 147–154 (2019). https://doi.org/10.1016/j.matpr.2019.06.412

    Article  Google Scholar 

  7. Alaneme, K.K., Sulaimon, A.A., Olubambi, P.A.: Mechanical and corrosion behaviour of iron modified Cu–Zn–Al alloys. Acta Metall. Slovaca 19, 292–301 (2013). https://doi.org/10.12776/ams.v19i4.184

    Article  Google Scholar 

  8. Du, L., Zhang, G., Wei, L., et al.: Inhomogeneous phases in Cu–Zn–Al–Fe–Mn and the micro-galvanic coupling in 3.5 wt % NaCl solutions at different pH. Corros. Sci. 195, 110005 (2022). https://doi.org/10.1016/j.corsci.2021.110005

    Article  Google Scholar 

  9. Alaneme, K.K.: Indentation resistance and corrosion behaviour of Fe–Mn modified Cu–Al alloys in selected industrial and biological fluids. Acta Metall. Slovaca 20, 366–373 (2014). https://doi.org/10.12776/ams.v20i4.335

    Article  Google Scholar 

  10. Brotzu, A., Di Cocco, V., Iacoviello, F., et al.: Latest attainments. In: Concilio, A., Antonucci, V., Auricchio, F., et al. (eds.) Shape Memory Alloy Engineering: For Aerospace, Structural, and Biomedical Applications, pp. 53–76. Elsevier, Amsterdam (2021)

    Chapter  Google Scholar 

  11. Saud, S.N., Hamzah, E., Abubakar, T., et al.: Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys. J. Alloys Compd. 612, 471–478 (2014). https://doi.org/10.1016/j.jallcom.2014.05.173

    Article  Google Scholar 

  12. Sarango de Souza, J., Lopes, C., de Oliveira, M., Altobelli Antunes, R., Galdino, A., da Silva, R.: Effects of Sn, Gd, and Mn additions on the surface chemistry and electrochemical behavior of CuAl-based alloys in sodium chloride solution. Appl. Surf. Sci. 573, 151488 (2022). https://doi.org/10.1016/J.APSUSC.2021.151488

    Article  Google Scholar 

  13. de Souza, J.S., de Oliveira, M.C.L., Antunes, R.A., da Silva, R.A.G.: Quaternary CuAlMn-based alloys with Gd and Sn additions: surface chemistry and corrosion behavior in sodium chloride solution. J. Mater. Res. Technol. 16, 1213–1230 (2022). https://doi.org/10.1016/J.JMRT.2021.12.064

    Article  Google Scholar 

  14. Saud, S.N., Hamzah, E., Abubakar, T.: Correlation of microstructural and corrosion characteristics of quaternary shape memory alloys Cu–Al–Ni–X (X = Mn or Ti). Trans. Nonferrous Met. Soc. China 25, 1158–1170 (2015). https://doi.org/10.1016/S1003-6326(15)63711-6

    Article  Google Scholar 

  15. Shivasiddaramiah, A.G., Mallik, U.S., Mahato, R., Shashishekar, C.: Evaluation of corrosion behaviour of Cu–Al–Be–Mn quaternary shape memory alloys. Mater. Today Proc. 4, 10971–10977 (2017). https://doi.org/10.1016/j.matpr.2017.08.054

    Article  Google Scholar 

  16. Raheem, A., Ali, K.A., Al-tai, Z.T.K.: The Effect of iron addition on the dry sliding wear and corrosion behavior of CuAlNi shape memory alloy. Eng. Technol. J. 28, 6888–6902 (2010)

    Article  Google Scholar 

  17. Babouri, L., Belmokre, K., Kabir, A., et al.: Structural and electrochemical study of binary copper alloys corrosion in 3 % NaCl solution. J. Chem. Pharm. Res. 7, 1175–1186 (2015)

    Google Scholar 

  18. Alaneme, K.K., Okotete, E.A., Bodunrin, M.O.: Microstructural analysis and corrosion behavior of Fe, B, and Fe–B-modified Cu–Zn–Al shape memory alloys. Corros. Rev. (2017). https://doi.org/10.1515/corrrev-2016-0053

    Article  Google Scholar 

  19. Haleem, A.H., Khulief, Z.T., Kadhim, I.N.: Modification of corrosion and mechanical behaviour of Cu–Zn–Al shape memory alloy. J. Phys. Conf. Ser. 1973, 012049 (2021). https://doi.org/10.1088/1742-6596/1973/1/012049

    Article  Google Scholar 

  20. Chen, B., Liang, C., Fu, D., Ren, D.: Corrosion behavior of Cu and the Cu–Zn–Al shape memory alloy in simulated uterine fluid. Contraception 72, 221–224 (2005). https://doi.org/10.1016/J.CONTRACEPTION.2005.04.006

    Article  Google Scholar 

  21. Sarango, J., Souza, D., Cristina, M., et al.: Quaternary CuAlMn-based alloys with Gd and Sn additions: surface chemistry and corrosion behavior in sodium chloride solution. J. Mater. Res. Technol. 16, 1213–1230 (2021). https://doi.org/10.1016/j.jmrt.2021.12.064

    Article  Google Scholar 

  22. Suhail, R., Adnan, A., Khethier, M., Mohammed, D.: Effect of tin addition on corrosion resistance and microstructure of Cu-based shape memory alloy. Mater. Today Proc. 42, 2119–2124 (2021). https://doi.org/10.1016/j.matpr.2020.12.295

    Article  Google Scholar 

  23. Olajide, J.L., Zannu, F.J., Daramola, O.O., et al.: Morphological characterization, in vitro biomedical corrosion and corrosion behaviour of As-Cast Cu–Zn–Al–FeMn alloys in selected intravenous and industrial fluids. Mater. Res. Express 6, 096567 (2019). https://doi.org/10.1088/2053-1591/ab309d

    Article  Google Scholar 

  24. Asanovic, V.D., Delijic, K.H., Leka, Z.B., Bosnjak, B.T.: The effect of heat treatment on the martensitic transformation and properties of Cu–Zn–Al alloy. J. Mech. Behav. Mater. 15, 219–238 (2004)

    Article  Google Scholar 

  25. Edoziuno, F.O., Adediran, A.A., Odoni, B.U., et al.: Performance of methyl-5-benzoyl-2-benzimidazole carbamate (mebendazole) as corrosion inhibitor for mild steel in dilute sulphuric acid. Sci. World. J. 2020, 1–11 (2020). https://doi.org/10.1155/2020/2756734

    Article  Google Scholar 

  26. Odoni, B.U., Edoziuno, F.O., Chukwurah, N.C.: Corrosion inhibition potential of methyl-5-benzoyl-2-benzimidazole carbamate (mebendazole) for mild steel in 1.0m sulphuric acid. Int. J. Res. Eng. Innov. 1, 190–194 (2017)

    Google Scholar 

  27. Edoziuno, F.O., Odoni, B.U., Adediran, A.A., et al.: Analyses of the gravimetric and electrochemical effects of C16H13N3O3 on mild steel corrosion in 0.5 M H2SO4. J. Phys. Conf. Ser. 1378, 032064 (2019). https://doi.org/10.1088/1742-6596/1378/3/032064

    Article  Google Scholar 

  28. Singh, V., Belova, L., Singh, B., Sharma, Y.C.: Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): process optimization through response surface methodology (RSM). Energy Convers. Manag. 174, 198–207 (2018). https://doi.org/10.1016/J.ENCONMAN.2018.08.029

    Article  Google Scholar 

  29. Anderson, M.J., Whitcomb, P.J.: RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments, 2nd edn. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  30. Anderson, M.J., Whitcomb, P.J.: DOE Simplified: Practical Tools for Effective Experimentation, 3rd edn. CRC Press, Boca Raton (2007)

    Google Scholar 

  31. Ariaee, S., Tutunchi, A., Kianvash, A., Entezami, A.A.: Modeling and optimization of mechanical behavior of bonded composite–steel single lap joints by response surface methodology. Int. J. Adhes. Adhes. 54, 30–39 (2014). https://doi.org/10.1016/J.IJADHADH.2014.05.002

    Article  Google Scholar 

  32. Nwaeju, C.C., Edoziuno, F.O., Nnuka, E.E.: Predictive modeling and statistical analysis of mechanical properties OF heat treated Cu-10 % Ni alloy using response surface methodology. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.12.167

    Article  Google Scholar 

  33. Nwaeju, C.C., Edoziuno, F.O., Adediran, A.A., et al.: Development of regression models to predict and optimize the composition and the mechanical properties of aluminium bronze alloy. Adv. Mater. Process. Technol. 00, 1–18 (2021). https://doi.org/10.1080/2374068X.2021.1939556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Odikpo Edoziuno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edoziuno, F.O., Adediran, A.A., Adetunla, A. et al. RSM-based optimization and predictive modelling of the gravimetric corrosion behaviour of solution-treated copper-based shape memory alloy in HCl solution. Int J Interact Des Manuf 18, 1131–1139 (2024). https://doi.org/10.1007/s12008-022-01163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01163-x

Keywords

Navigation