Skip to main content
Log in

Machine Learning and Statistical Approach to Predict and Analyze Wear Rates in Copper Surface Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This research demonstrates the application of machine learning models and statistics methods in predicting and analyzing dry sliding wear rates on novel copper-based surface composites. Boron nitride particles of varying fractions was deposited experimentally over the copper surface through friction stir processing. Experimental and statistical analysis proved that the presence of BN particles can reduce wear rate considerably. Analysis of worn-out surface revealed a mild adhesive wear during low load condition and an abrasive mode of wear during higher load conditions. Artificial neural network based feed forward back propagation model with topology 4-7-1 was modeled and prediction profiles displayed good agreement with experimental outcomes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.C. Tjong, K.C. Lau, Tribological behaviour of SiC particle-reinforced copper matrix composites. Mater. Lett. 43, 274–280 (2000). https://doi.org/10.1016/S0167-577X(99)00273-6

    Article  CAS  Google Scholar 

  2. K. Song, X. Guo, S. Liang, P. Zhao, Y. Zhang, Relationship between interfacial stress and thermal expansion coefficient of copper–matrix composites with different reinforced phases. Mater. Sci. Technol. 30, 171–175 (2014). https://doi.org/10.1179/1743284713Y.0000000332

    Article  CAS  Google Scholar 

  3. V. Rajkovic, D. Bozic, J. Stasic, H. Wang, M.T. Jovanovic, Processing, characterization and properties of copper-based composites strengthened by low amount of alumina particles. Powder Technol. 268, 392–400 (2014). https://doi.org/10.1016/j.powtec.2014.08.051

    Article  CAS  Google Scholar 

  4. B. Chen, J. Yang, Q. Zhang, H. Huang, H. Li, H. Tang et al., Tribological properties of copper-based composites with copper coated NbSe2 and CNT. Mater. Des. 75, 24–31 (2015). https://doi.org/10.1016/j.matdes.2015.03.012

    Article  CAS  Google Scholar 

  5. G.A. Bagheri, The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles. J. Alloys Compd. 676, 120–126 (2016). https://doi.org/10.1016/j.jallcom.2016.03.085

    Article  CAS  Google Scholar 

  6. M. Kestursatya, J.K. Kim, P.K. Rohatgi, Wear performance of copper-graphite composite and a leaded copper alloy. Mater. Sci. Eng. A 339, 150–158 (2003). https://doi.org/10.1016/S0921-5093(02)00114-4

    Article  Google Scholar 

  7. D. Nayak, M. Debata, Effect of composition and milling time on mechanical and wear performance of copper-graphite composites processed by powder metallurgy route. Powder Metall. 000, 1–9 (2013). https://doi.org/10.1179/1743290113Y.0000000080

    Article  CAS  Google Scholar 

  8. J. Wang, R. Zhang, J. Xu, C. Wu, P. Chen, Effect of the content of ball-milled expanded graphite on the bending and tribological properties of copper-graphite composites. Mater. Des. 47, 667–671 (2013). https://doi.org/10.1016/j.matdes.2013.01.008

    Article  CAS  Google Scholar 

  9. B. Chen, Q. Bi, J. Yang, Y. Xia, J. Hao, Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 41, 1145–1152 (2008). https://doi.org/10.1016/j.triboint.2008.02.014

    Article  CAS  Google Scholar 

  10. O.A.M. Elkady, A. Abu-Oqail, E.M.M. Ewais, M. El-Sheikh, Physico-mechanical and tribological properties of Cu/h-BN nanocomposites synthesized by PM route. J. Alloys Compd. 625, 309–317 (2015). https://doi.org/10.1016/j.jallcom.2014.10.171

    Article  CAS  Google Scholar 

  11. S. Huang, Y. Feng, H. Liu, K. Ding, G. Qian, Electrical sliding friction and wear properties of Cu–MoS2–graphite–WS2 nanotubes composites in air and vacuum conditions. Mater. Sci. Eng. A 560, 685–692 (2013). https://doi.org/10.1016/j.msea.2012.10.014

    Article  CAS  Google Scholar 

  12. M.M.H. Bastwros, A.M.K. Esawi, A. Wifi, Friction and wear behavior of Al-CNT composites. Wear 307, 164–173 (2013). https://doi.org/10.1016/j.wear.2013.08.021

    Article  CAS  Google Scholar 

  13. C. Guiderdoni, E. Pavlenko, V. Turq, A. Weibel, P. Puech, C. Estournès et al., The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties. Carbon N Y 58, 185–197 (2013). https://doi.org/10.1016/j.carbon.2013.02.049

    Article  CAS  Google Scholar 

  14. E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear 268, 1111–1121 (2010). https://doi.org/10.1016/j.wear.2010.01.005

    Article  CAS  Google Scholar 

  15. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater. Sci. Eng. A 500, 84–91 (2009). https://doi.org/10.1016/j.msea.2008.09.064

    Article  CAS  Google Scholar 

  16. P. Liu, Q.Y. Shi, Zhang Y. Bin, Microstructural evaluation and corrosion properties of aluminium matrix surface composite adding Al-based amorphous fabricated by friction stir processing. Compos. Part B Eng. 52, 137–143 (2013). https://doi.org/10.1016/j.compositesb.2013.04.019

    Article  CAS  Google Scholar 

  17. C.N. Shyam Kumar, R. Bauri, D. Yadav, Wear properties of 5083 Al-W surface composite fabricated by friction stir processing. Tribol. Int. 101, 284–290 (2016). https://doi.org/10.1016/j.triboint.2016.04.033

    Article  CAS  Google Scholar 

  18. T. Thankachan, K.S. Prakash, Microstructural, mechanical and tribological behavior of aluminum nitride reinforced copper surface composites fabricated through friction stir processing route. Mater. Sci. Eng. A 688, 301–308 (2017). https://doi.org/10.1016/j.msea.2017.02.010

    Article  CAS  Google Scholar 

  19. T. Thankachan, K.S. Prakash, V. Kavimani, Investigations on the effect of friction stir processing on Cu–BN surface composites. Mater Manuf Process 33, 299–307 (2018). https://doi.org/10.1080/10426914.2017.1291952

    Article  CAS  Google Scholar 

  20. T. Thankachan, K. Soorya Prakash, M. Loganathan, WEDM process parameter optimization of FSPed copper–BN composites. Mater Manuf Process 33, 350–358 (2018). https://doi.org/10.1080/10426914.2017.1339311

    Article  CAS  Google Scholar 

  21. T. Thankachan, K. Soorya Prakash, M. Kamarthin, Optimizing the tribological behavior of hybrid copper surface composites using statistical and machine learning techniques. J. Tribol. 140, 031610 (2018). https://doi.org/10.1115/1.4038688

    Article  CAS  Google Scholar 

  22. C. Zishan, L. Hejun, F. Qiangang, Q. Xinfa, Tribological behaviors of SiC/h-BN composite coating at elevated temperatures. Tribiol. Int. 56, 58–65 (2012). https://doi.org/10.1016/j.triboint.2012.06.026

    Article  CAS  Google Scholar 

  23. B. Podgornik, T. Kosec, A. Kocijan, Č. Donik, Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming. Tribol. Int. 81, 267–275 (2015)

    Article  CAS  Google Scholar 

  24. G. Kranthi, A. Satapathy, Evaluation and prediction of wear response of pine wood dust filled epoxy composites using neural computation. Comput. Mater. Sci. 49, 609–614 (2010). https://doi.org/10.1016/j.commatsci.2010.06.001

    Article  CAS  Google Scholar 

  25. T. Thankachan, K. Sooryaprakash, Artificial neural network-based modeling for impact energy of cast duplex stainless steel. Arab. J. Sci. Eng. (2017). https://doi.org/10.1007/s13369-017-2880-9

    Article  Google Scholar 

  26. T. Thankachan, K.S. Prakash, C. David Pleass, D. Rammasamy, B. Prabakaran, S. Jothi, Artificial neural network to predict the degraded mechanical properties of metallic materials due to the presence of hydrogen. Int. J. Hydrog. Energy 42, 28612–28621 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.149

    Article  CAS  Google Scholar 

  27. K.S. Prakash, T. Thankachan, R. Radhakrishnan, Parametric optimization of dry sliding wear loss of copper–MWCNT composites. Trans. Nonferrous Met. Soc. China 27, 627–637 (2017). https://doi.org/10.1016/S1003-6326(17)60070-0

    Article  CAS  Google Scholar 

  28. L.A. Gyurova, K. Friedrich, Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites. Tribol. Int. 44, 603–609 (2011). https://doi.org/10.1016/j.triboint.2010.12.011

    Article  CAS  Google Scholar 

  29. M.E. Haque, K.V. Sudhakar, Prediction of corrosion–fatigue behavior of DP steel through artificial neural network. Int. J. Fatigue 23, 1–4 (2001)

    Article  CAS  Google Scholar 

  30. H. Mirzadeh, A. Najafizadeh, Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel. Mater. Charact. 59, 1650–1654 (2008). https://doi.org/10.1016/j.matchar.2008.03.004

    Article  CAS  Google Scholar 

  31. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. Neural Netw. (1989). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  32. T. Thankachan, K. Sooryaprakash, Artificial neural network-based modeling for impact energy of cast duplex stainless steel. Arab. J. Sci. Eng. 43(3), 1335–1343 (2018). https://doi.org/10.1007/s13369-017-2880-9

    Article  CAS  Google Scholar 

  33. T. Thankachan, K.S. Prakash, V. Kavimani, Effect of friction stir processing and hybrid reinforcements on copper. Mater. Manuf. Process. 33, 1681–1692 (2018). https://doi.org/10.1080/10426914.2018.1453149

    Article  CAS  Google Scholar 

  34. M.I. Abd El Aal, H.S. Kim, Effect of the fabrication method on the wear properties of copper silicon carbide composites. Tribol. Int. 128, 140–154 (2018). https://doi.org/10.1016/j.triboint.2018.07.024

    Article  CAS  Google Scholar 

  35. Y. Xiao, Z. Zhang, P. Yao, K. Fan, H. Zhou, T. Gong et al., Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol. Int. 119, 585–592 (2018). https://doi.org/10.1016/j.triboint.2017.11.038

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus Thankachan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thankachan, T., Soorya Prakash, K., Kavimani, V. et al. Machine Learning and Statistical Approach to Predict and Analyze Wear Rates in Copper Surface Composites. Met. Mater. Int. 27, 220–234 (2021). https://doi.org/10.1007/s12540-020-00809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00809-3

Keywords

Navigation