Skip to main content
Log in

Prediction of Dry Sliding Wear Response of AlMg1SiCu/Silicon Carbide/Molybdenum Disulphide Hybrid Composites Using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Response Surface Methodology (RSM)

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this research work, an effort was made to predict the dry sliding wear response of AlMg1SiCu alloy hybrid composites which were reinforced with 10% Silicon carbide particles (SiC) together with weight fractions of 3, 6 and 9% of self-lubricant molybdenum disulphide particles (MoS2) through melt stir casting. The wear behaviour of the hybrid composite samples was evaluated based on Box-Behnken design on pin-on-disc tribometer without lubrication. The output response weight loss was employed to train the neural network model in ANFIS back-propagation algorithm. The weight loss of 9% MoS2 hybrid composite reduced at low sliding speeds, due to the development of shallow sliding grooves and MoS2-lubricated tribolayer. Scanning electron micrographs and EDS of the AlMg1SiCu alloy hybrid composites revealed a uniform distribution of SiC and MoS2 particles. The tensile strength of the as-cast hybrid composites increases as the wt.% of MoS2 particles increases, according to the tests. However, the addition of MoS2 improved the hardness of the hybrid composites until it reached 6 wt.%, after which it decreased slightly. Weight loss and coefficient of friction decreased by addition of self-lubricant MoS2 in the matrix material. Worn-out surface of the hybrid composite shows the controlling wear mechanisms of the composites, and well-trained ANFIS model could accurately predict the responses better when compared with the response surface methodology model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Rao, R.N.; Das, S.: Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites. Mater. Design 31(3), 1200–1207 (2010). https://doi.org/10.1016/j.matdes.2009.09.032

    Article  Google Scholar 

  2. Bauri, R.; Surappa, M.K.: Sliding wear behavior of Al–Li–SiCp composites. Wear 265(11–12), 1756–1766 (2008). https://doi.org/10.1016/j.wear.2008.04.022

    Article  Google Scholar 

  3. Baradeshwaran, A.; Vettivel, S.C.; Elayapermal, A., et al.: Experimental investigation on mechanical behavior, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites. Mater. Design 63, 620–632 (2014). https://doi.org/10.1016/j.matdes.2014.06.054

    Article  Google Scholar 

  4. Vinoth, K.S.; Subramanian, R.; Dharmalingam, S., et al.: Mechanical and tribological characteristics of stir-cast Al–Si10Mg and self-lubricating Al–Si10Mg/MoS2 composites. Mater. Tech 46(5), 497–501 (2012)

    Google Scholar 

  5. Menezes, P.L.; Rohatgi, P.K.; Lovel, M.R.: Self-lubricating behaviour of graphite reinforced metal matrix composites. In: Nosonovsk, M.; Bhushan, B. (Eds.) Green Tribology, pp. 445–480. Springer, Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  6. Prasad, S.V.; Asthana, R.: Aluminum metal matrix composites for automotive applications; tribological considerations. Tribol. Lett. 17, 445–453 (2004)

    Article  Google Scholar 

  7. Dharmalingam, S.; Subramanian, R.; Kök, M.: Optimization of abrasive wear performance in aluminium hybrid metal matrix composites using Taguchi–grey relational analysis. Proc. Inst. Mech. Eng Part J 227, 749–760 (2013)

    Article  Google Scholar 

  8. Monikandan, V.V.; Joseph, M.A.; Rajendra Kumar, P.K.: Dry sliding wear studies of aluminum matrix hybrid composites. Res. Effi. Technol. 2, S12–S24 (2016)

    Google Scholar 

  9. Deuis, R.L.; Subramanian, C.; Yellup, J.M.: Dry sliding wear of aluminum composites—a review. Compos. Sci. Technol. 57, 415–435 (1997)

    Article  Google Scholar 

  10. Sahoo, P.; Ghosh, S.: Tribological behavior of aluminium metal matrix composites—a review. J. Tribol. Res 2(1), 1–14 (2011)

    Google Scholar 

  11. Sahin, Y.: The prediction of wear resistance model for the metal matrix composites. Wear 258(11–12), 1717–1722 (2005). https://doi.org/10.1016/j.wear.2004.11.024

    Article  Google Scholar 

  12. Velmurugan, C.; Subramanian, R.; Thirugnanam, S.: Experimental study on the effect of SiC and graphite particles on weight loss of Al 6061 hybrid composite materials. J. Tribol. Surf. Eng 2(1–2), 49–68 (2011)

    Google Scholar 

  13. Kumar, S.; Balasubramanian, V.: Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCpP/M composites—a statistical analysis. Tribol. Int. 43(1–2), 414–422 (2010). https://doi.org/10.1016/j.triboint.2009.07.003

    Article  Google Scholar 

  14. Suresh, S.; Shenbaga-Vinayaga-Moorthi, N.; Vettivel, S.C., et al.: Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology. Mater. Design 59, 383–396 (2014). https://doi.org/10.1016/j.matdes.2014.02.053

    Article  Google Scholar 

  15. Manjunath-Patel, G.C.; Krishna, P.; Parapagoundar, B.M.: Squeeze casting process modeling by a conventional statistical regression analysis approach. Appl. Math. Model 40(15–16), 6869–6888 (2016). https://doi.org/10.1016/j.apm.2016.02.029

    Article  Google Scholar 

  16. Vijayakumar, S.; Karunamoorthy, L.: Modelling wear behaviour of Al–SiC metal matrix composites: soft computing technique. Tribol. Mater. Surf. Interfaces 6, 25–30 (2013). https://doi.org/10.1179/1751584X12Y.0000000002

    Article  Google Scholar 

  17. Velmurugan, C.; Muthukumaran, V.; Ragupathy, K., et al.: Modelling Volume loss of heat treated Al6061 composites using ANN. Proced. Mater. Sci 5, 31–40 (2014). https://doi.org/10.1016/j.mspro.2014.07.239

    Article  Google Scholar 

  18. Gajalakshmi, K.; Senthilkumar, N.; Prabu, B.: Multi-response optimization of dry sliding wear parameters of AA6026 using hybrid gray relational analysis coupled with response surface method. Meas. Cont. 52(5–6), 540–553 (2019). https://doi.org/10.1177/0020294019842603

    Article  Google Scholar 

  19. Hashim, J.; Looney, L.; Hashmi, M.S.J.: Particle distribution in cast metal matrix composites—part II. J. Mater. Proc. Technol. 123, 258–263 (2002). https://doi.org/10.1016/S0924-0136(02)00099-7

    Article  Google Scholar 

  20. Lu, J.; Lu, Z.: Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. J. Manuf. Sci. Eng. 132(061007), 1–7 (2010). https://doi.org/10.1115/1.4002851

    Article  Google Scholar 

  21. Sahin, Y.: Tribological behaviour of metal matrix and its composite. Mater. Des. 28, 1348–1352 (2007)

    Article  Google Scholar 

  22. Rebba, B.; Ramanaiah, N.: Evaluation of mechanical properties of aluminium alloy (Al–2024) reinforced with molybdenum disulphide (MOS2) metal matrix composites. Procedia Mater Sci 6, 1161–1169 (2014). https://doi.org/10.1016/j.mspro.2014.07.189

    Article  Google Scholar 

  23. Sun, C.; Song, M.; Wang, Z.; He, Y.: Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites. J. Mater. Eng. Perf. 20, 1606–1612 (2016)

    Article  Google Scholar 

  24. Koker, R.; Altinkok, N.; Demir, A.: Neural network-based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater. Design 28(2), 616–627 (2007)

    Article  Google Scholar 

  25. Sannino, A.P.; Rack, H.J.: Surface topography evolution during sliding wear of 2009 Al–SiCp/17–4 PH. Wear 181–183, 202–211 (1995)

    Article  Google Scholar 

  26. Velmurugan, C.; Subramanian, R.; Thirugnanam, S., et al.: Investigation of friction and wear behavior of hybrid aluminium composites. Ind. Lub. Trib 64(3), 152 (2012). https://doi.org/10.1108/00368791211218687

    Article  Google Scholar 

  27. Gopalakrishnan, S.; Murugan, N.: Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method. Comp. Part B 43(2), 302–308 (2012). https://doi.org/10.1016/j.compositesb.2011.08.049

    Article  Google Scholar 

  28. Rajesh, S.; Velmurugan, C.; Ebenezer Jacob Dhas, D.S.; Samuel Ratna Kumar, P.S.: Studies on the tribological behaviour of exsitu-synthesized AlMg1SiCu/titanium carbide/molybdenum disulfide hybrid composites. Mater. Res. Express 6, 1264 (2019). https://doi.org/10.1088/2053-1591/ab5f1e

    Article  Google Scholar 

  29. Manjunath-Patel, G.C.; Shettigar, A.K.; Mahesh-Parappagoudar, B.: A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Proc 32, 199–212 (2018). https://doi.org/10.1016/j.jmapro.2018.02.004

    Article  Google Scholar 

  30. Mandal, N.; Roy, H.; Mondal, B.; Murmu, N.; Mukhopadhyay, S.: Mathematical modeling of wear characteristics of 6061 Al–alloy–SiCp composite using response surface methodology. J. Mater. Eng. Perform. 21, 17–24 (2012). https://doi.org/10.1007/s11665-011-9890-7

    Article  Google Scholar 

  31. Hamidreza, G.; Mohd, H.I.; Norhayati, A.; Navid, M.: Microstructure development mechanical and tribological properties of a semisolid A356/xSiCp composite. J. Appl. Res. Technol. 15, 533–544 (2017). https://doi.org/10.1016/j.jart.2017.06.002

    Article  Google Scholar 

  32. Kanthavel, K.; Sumesh, K.R.; Saravanakumar, P.: Study of tribological properties on Al/Al2O3/MoS2 hybrid composite processed by powder metallurgy. Alexan. Eng. J. 55, 13–17 (2016). https://doi.org/10.1016/j.aej.2016.01.024

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ragupathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragupathy, K., Velmurugan, C., Ebenezer Jacob Dhas, D.S. et al. Prediction of Dry Sliding Wear Response of AlMg1SiCu/Silicon Carbide/Molybdenum Disulphide Hybrid Composites Using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Response Surface Methodology (RSM). Arab J Sci Eng 46, 12045–12063 (2021). https://doi.org/10.1007/s13369-021-05820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05820-3

Keywords

Navigation