Skip to main content
Log in

Effect of Mg Content on the Damping Behavior of Al–Mg Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This article investigated the effect of Mg content (4.5, 6.5 and 9.2, in wt%) on the damping capacities of Al–Mg alloys. The results indicate that the damping behavior can be divided into three regions. Region I refers to the low strain amplitude region (ε < 5 × 10−5), where the damping capacity decreases with increasing the Mg content and has almost no relation with the strain amplitude. Region II is the middle strain amplitude region (5 × 10−5 < ε < 8 × 10−4), where the damping capacity increases rapidly with the strain. Region III refers to the high strain amplitude region (8 × 10−4 < ε < 2 × 10−3), where the damping capacity remains constant and is independent of the strain when the strain is high enough, but increases with the Mg content. The damping values Q−1 of Al–4.5Mg, Al–6.5Mg and Al–9.2Mg alloys are 0.01501 ± 0.00032, 0.01633 ± 0.00032 and 0.01862 ± 0.00119 at the strain of 1 × 10−3, respectively. The damping capacity in Region I is mainly determined by the lattice distortion caused by Mg addition and the restoring force caused by pinning points and Suzuki segregation. The extended dislocations break away from the pinning effect of Mg atoms and become moveable in Region II, and the movement of extended dislocations is the dominant damping mechanism in Region III.

Graphic Abstract

The damping behavior associated with the movement of extended dislocations and the force diagram of the extended dislocation segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.C. Sharma, M. Krishna, A. Shashishankar, S.P. Vizhian, Mater. Sci. Eng. A 364, 109–116 (2004)

    Google Scholar 

  2. M. Colakoglu, J. Theor. Appl. Mech. Pol. 42, 95–105 (2004)

    Google Scholar 

  3. C.D. Lee, Mater. Sci. Eng. A 394, 112–116 (2005)

    Google Scholar 

  4. M.P. Liu, H.J. Roven, M.Y. Murashkin, R.Z. Valiev, A. Kilmametov, Z. Zhang, Y.D. Yu, J. Mater. Sci. 48, 4681–4688 (2013)

    CAS  Google Scholar 

  5. D.H. Jang, Y.B. Park, W.J. Kim, Mater. Sci. Eng. A 744, 36–44 (2019)

    CAS  Google Scholar 

  6. H.J. Jiang, C.Y. Liu, Z.Y. Ma, X. Zhang, L. Yu, M.Z. Ma, R.P. Liu, J. Alloys Compd. 722, 138–144 (2017)

    CAS  Google Scholar 

  7. Y.J. Zhang, N.H. Ma, H.W. Wang, X.F. Li, Mater. Des. 29, 706–708 (2008)

    CAS  Google Scholar 

  8. C.Y. Liu, H.J. Jiang, B. Zhang, Z.Y. Ma, Mater. Charact. 136, 382–387 (2018)

    CAS  Google Scholar 

  9. M. Atodiresei, G. Gremaud, R. Schaller, Mater. Sci. Eng. A 442, 160–164 (2006)

    Google Scholar 

  10. C.Y. Xie, R. Schaller, C. Jaquerod, Mater. Sci. Eng. A 252, 78–84 (1998)

    Google Scholar 

  11. A. Granato, K. Lücke, J. Appl. Phys. 27, 583–593 (1956)

    Google Scholar 

  12. A. Granato, K. Lücke, J. Appl. Phys. 27, 789–805 (1956)

    Google Scholar 

  13. J.F. Wang, R.P. Lu, D.Z. Qin, X.F. Huang, F.S. Pan, Mater. Sci. Eng. A 560, 667–671 (2013)

    CAS  Google Scholar 

  14. I.G. Ritchie, Z.L. Pan, Metall. Trans. A 22, 607–616 (1991)

    Google Scholar 

  15. X.S. Hu, K. Wu, M.Y. Zheng, Scr. Mater. 54, 1639–1643 (2006)

    CAS  Google Scholar 

  16. H.J. Jiang, C.Y. Liu, B. Zhang, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu, Mater. Charact. 131, 425–430 (2017)

    CAS  Google Scholar 

  17. S. Asano, Y. Amaki, Jpn. Inst Metal. 66, 109–116 (2002)

    CAS  Google Scholar 

  18. H.J. Wang, H. Wang, R.Q. Zhang, R. Liu, Y. Xu, R. Tang, J. Alloys Compd. 770, 252–256 (2019)

    CAS  Google Scholar 

  19. T.S. Kê, P. Cui, Scr. Metal. Mater. 26, 1487–1492 (1992)

    Google Scholar 

  20. E. Kovács-Csetényi, B. Bas, Phys. Stat. Sol. (a) 15, 687–690 (1973)

    Google Scholar 

  21. M. Popović, E. Romhanji, Mater. Sci. Eng. A 492, 460–467 (2008)

    Google Scholar 

  22. E.L. Huskins, B. Cao, K.T. Ramesh, Mater. Sci. Eng. A 527, 1292–1298 (2010)

    Google Scholar 

  23. X.S. Hu, Y.K. Zhang, M.Y. Zheng, K. Wu, Scr. Mater. 52, 1141–1145 (2005)

    CAS  Google Scholar 

  24. X.S. Hu, K. Wu, M.Y. Zheng, Adv. Mater. Res. 15–17, 479–484 (2006)

    Google Scholar 

  25. D. Ma, M. Friák, J.V. von Pezold, D. Raabe, J. Neugebauer, Acta Mater. 85, 53–66 (2015)

    CAS  Google Scholar 

  26. G. Schoeck, Philos. Mag. A 81, 1161–1176 (2001)

    CAS  Google Scholar 

  27. C. Woodward, D.R. Trinkle, L.G. Hector Jr., D.L. Olmsted, Phys. Rev. Lett. 100, 045507 (2008)

    CAS  Google Scholar 

  28. R. Dewit, R.E. Howard, Acta Metall. 13, 655–661 (1965)

    CAS  Google Scholar 

  29. S.K. Huang, N. Li, Y.H. Wen, J. Teng, S. Ding, Y.G. Xu, Mater. Sci. Eng. A 479, 223–228 (2008)

    Google Scholar 

  30. S.K. Huang, Y.H. Wen, N. Li, J. Teng, S. Ding, Y.G. Xu, Mater. Charact. 59, 681–687 (2008)

    CAS  Google Scholar 

  31. S.K. Huang, W.R. Huang, J.H. Liu, J. Teng, N. Li, Y.H. Wen, Mater. Sci. Eng. A 560, 837–840 (2013)

    CAS  Google Scholar 

  32. B. Wu, B. Qian, Y. Wen, Mater. Sci. Technol. 33, 1019–1025 (2016)

    Google Scholar 

  33. M.C. Mangalick, N.F. Fiore, Acta Metall. 17, 291–297 (1969)

    CAS  Google Scholar 

  34. Y.F. Zeng, X.R. Cai, M. Koslowski, Acta Mater. 164, 1–11 (2019)

    CAS  Google Scholar 

  35. H. Suzuki, J. Phys. Soc. Jpn. 17, 322–325 (1962)

    CAS  Google Scholar 

  36. H. Suzuki, Sci. Rep. Res. Inst. Tohoku Univ. 4, 455–463 (1952)

    Google Scholar 

  37. P.C.J. Gallagher, Metall. Trans. 1, 2429–2461 (1970)

    CAS  Google Scholar 

  38. T.C. Schulthess, P.E.A. Turchi, A. Gonis, T.G. Nieh, Acta Mater. 46, 2215–2221 (1998)

    CAS  Google Scholar 

  39. E.B. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52, 2507–2519 (2004)

    CAS  Google Scholar 

  40. M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Scr. Mater. 64, 916–918 (2011)

    CAS  Google Scholar 

  41. T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, K. Higashi, Scr. Mater. 64, 355–358 (2011)

    CAS  Google Scholar 

  42. Y. Liu, M.P. Liu, X.F. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev, H. Zhou, Scr. Mater. 159, 137–141 (2019)

    CAS  Google Scholar 

  43. D.D. Zhao, O.M. Løvvik, K. Marthinsen, Y.J. Li, J. Mater. Sci. 51, 6552–6568 (2016)

    CAS  Google Scholar 

  44. K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, Z. Horita, Acta Mater. 69, 68–77 (2014)

    CAS  Google Scholar 

  45. J. Lothe, J.P. Hirth, Theory of Dislocations, 2nd edn. (Krieger Publishing Company, New York, 1968), pp. 839–840

    Google Scholar 

  46. Y. Qi, R.K. Mishra, Phys. Rev. B 75, 2288 (2007)

    Google Scholar 

  47. D.D. Zhao, O.M. Løvvik, K. Marthinsen, Y.J. Li, J. Alloys Compd. 690, 841–850 (2017)

    CAS  Google Scholar 

  48. M.S. Soliman, J. Mater. Sci. 28, 4483–4488 (1993)

    CAS  Google Scholar 

  49. G.E. Totten, D.S. Mackenzie, Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes (Marcel Dekker, New York, 2003), pp. 84–85

    Google Scholar 

  50. ASM International Handbook Committee, Alloy Phase Diagrams (ASM International, Materials Park, 2018)

    Google Scholar 

  51. D.Q. Wan, J.C. Wang, G.C. Yang, Mater. Sci. Eng. A 517, 114–117 (2009)

    Google Scholar 

  52. Y. Koizumi, M. Ueyama, N. Tsuji, Y. Minamino, K. Ota, J. Alloys Compd. 355, 47–51 (2003)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Mr. Changyue Yang in Experimental Teaching Center, College of Polymer Science and Engineering, Sichuan University for his assistance in the damping measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongge Yan or Jihua Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yan, H., Chen, J. et al. Effect of Mg Content on the Damping Behavior of Al–Mg Alloys. Met. Mater. Int. 27, 3155–3163 (2021). https://doi.org/10.1007/s12540-020-00695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00695-9

Keywords

Navigation