Skip to main content
Log in

Effect of Mn Modification on Microstructure and Mechanical Properties of Magnesium Alloy with Low Gd Content

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The evolution of microstructure and mechanical properties of the dilute Mg–Gd alloy with Mn modification were investigated systematically in this paper. The results show that the combination of Mn and different processing states could adjust the solid solubility of Gd in the Mg matrix, thereby changing the morphology of the second phases and improving the properties of the alloy. With the addition of 0.8 wt% Mn into the Mg–4Gd alloy, the atomic utilization ratio of Gd atoms decreases from 61.5 to 51.8% during the water-cooling casting process, but it increases from 73.8 to 81.0% during homogenization treatment and increases from 72.3 to 84.1% during hot extrusion. Thus, the mean diameter of granular phases of the Mg–4Gd alloy is larger than that of Mg–4Gd–0.8Mn alloy after the isothermal heat treatment. The Mn addition has little effect on the Hall–Petch constant KY and KH of Mg–4Gd alloy, but improves the σ0 value significantly due to the increase of the atomic utilization ratio of Gd atoms. Mn element can improve the mechanical properties of Mg–4Gd alloy, and the increase of yield strength and ductility of as-extruded Mg–4Gd–0.8Mn alloy is mainly attributed to grain refinement and the decrease of the texture intensity.

Graphic Abstract

The solid solubility of Gd in Mg matrix can be regulated by the combination of Mn and different processing states, thereby changing the morphology of the second phases and improving the properties of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Janbozorgi, K.K. Taheri, A.K. Taheri, J. Magnes. Alloys 7, 80–89 (2019)

    Article  CAS  Google Scholar 

  2. S. Khalifeh, T.D. Burleigh, J. Magnes. Alloys 6, 327–336 (2018)

    Article  CAS  Google Scholar 

  3. W. Liu, Z.J. Yan, Z.D. Zhang, Y.X. Zhang, G.Y. Cai, Z.Y. Li, J. Alloys Compd. 788, 705–711 (2019)

    Article  CAS  Google Scholar 

  4. F. Zhang, Y.F. Wang, Y.B. Duan, K.J. Wang, Y.T. Wang, W.J. Zhang, J. Hu, J. Alloys Compd. 788, 541–548 (2019)

    Article  CAS  Google Scholar 

  5. D.J. Chen, K. Zhang, T. Li, X.G. Li, Y.J. Li, M.L. Ma, G.L. Shi, J.W. Yuan, Mater. Sci. Eng. A 744, 1–9 (2019)

    Article  CAS  Google Scholar 

  6. J.L. Li, D. Wu, R.S. Chen, E.H. Han, Acta Mater. 159, 31–45 (2018)

    Article  CAS  Google Scholar 

  7. J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, M.L. Zhang, J. Magnes. Alloys 6, 277–291 (2018)

    Article  CAS  Google Scholar 

  8. H. Zhou, H.Y. Ning, X.L. Ma, D.D. Yin, L.R. Xiao, X.C. Sha, Y.D. Yu, Q.D. Wang, Y.S. Li, J. Mater. Sci. Technol. 34, 1067–1075 (2018)

    Article  Google Scholar 

  9. X.W. Heng, Y. Zhang, W. Rong, Y.J. Wu, L.M. Peng, Mater. Des. 169, 107666 (2019)

    Article  CAS  Google Scholar 

  10. H.-Y. Ha, H.J. Kim, S.-M. Baek, B. Kim, S.-D. Sohn, H.-J. Shin, H.Y. Jeong, S.H. Park, C.D. Yim, B.S. You, J.G. Lee, S.S. Park, Scr. Mater. 109, 38–43 (2015)

    Article  CAS  Google Scholar 

  11. H. Okamoto, J. Phase Equilib. Diff. 36, 390–401 (2015)

    Article  CAS  Google Scholar 

  12. L. Lai, K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, G.L. Shi, J. Rare Earths 6, 552–558 (2016)

    Google Scholar 

  13. Y. Xu, F. Gensch, Z. Ren, K.U. Kainer, N. Hort, Prog. Nat. Sci. Mater. 28, 724–730 (2018)

    Article  CAS  Google Scholar 

  14. N. Ono, R. Nowak, S. Miura, Mater. Lett. 58, 39–43 (2004)

    Article  CAS  Google Scholar 

  15. H. Somekawa, T. Mukai, Mater. Sci. Eng. A 561, 378–385 (2013)

    Article  CAS  Google Scholar 

  16. D. Nagarajan, C.H. Caceres, J.R. Griffiths, Metall. Mater. Trans. A 47A, 5401–5408 (2016)

    Article  Google Scholar 

  17. M. Vlkek, J. Cizek, F. Lukac, P. Hruska, B. Smola, I. Stulikova, H. Kudrnova, P. Minarik, T. Kmjec, T. Vlasak, Int. J. Hydrogen Energ. 42, 22598–22604 (2017)

    Article  Google Scholar 

  18. K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Mater. Sci. Technol. 24, 320–326 (2008)

    Article  CAS  Google Scholar 

  19. L. Xiao, G.Y. Yang, Y. Liu, S.F. Luo, W.Q. Jie, J. Mater. Sci. Technol. 34, 2246–2255 (2018)

    Article  Google Scholar 

  20. J.D. Robson, D.T. Henry, B. Davis, Acta Mater. 57, 2739–2747 (2009)

    Article  CAS  Google Scholar 

  21. J.R. Dong, D.F. Zhang, Y.F. Dong, S.S. Chai, F.S. Pan, Mater. Sci. Eng. A 618, 262–270 (2014)

    Article  CAS  Google Scholar 

  22. Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31, 2895–2906 (2000)

    Article  Google Scholar 

  23. Z. Fan, F. Gao, L. Zhou, S.Z. Lu, Acta Mater. 152, 248–257 (2018)

    Article  CAS  Google Scholar 

  24. J.W. Kang, C.J. Wang, K.K. Deng, K.B. Nie, Y. Bai, W.J. Li, J. Alloys Compd. 720, 196–206 (2017)

    Article  CAS  Google Scholar 

  25. J.L. Zhang, Y.L. Liu, J. Liu, Y.C. Yu, S.B. Wang, J. Alloys Compd. 663, 610–616 (2016)

    Article  CAS  Google Scholar 

  26. B.F. Luan, L.J. Chai, J.W. Chen, M. Zhang, Q. Liu, J. Nucl. Mater. 423, 127–131 (2012)

    Article  CAS  Google Scholar 

  27. M.G. Jiang, C. Xu, H. Yan, S.H. Lu, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, Sci. Rep-UK 8, 1-11 (2018)

  28. D. Nagarajan, C.H. Cáceres, J.R. Griffiths, Metall. Mater. Trans. A 47, 5401–5408 (2016)

    Article  CAS  Google Scholar 

  29. A.H. Blake, C.H. Cáceres, Mater. Sci. Eng. A 483–484, 161–163 (2008)

    Article  Google Scholar 

  30. Q.H. Wang, Y.Q. Shen, B. Jiang, A.T. Tang, Y.F. Chai, J.F. Song, T.H. Yang, G.S. Huang, F.S. Pan, Mater. Sci. Eng. A 736, 404–416 (2018)

    Article  CAS  Google Scholar 

  31. A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, H.E. Kadiri, Acta Mater. 138, 27–41 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the National Key Research and Development Program of China (No. 2016YFB0301100), the Fundamental Research Funds for the Central Universities (No. 2018CDJDCD0001), and the Key Nature Science Foundation of Chongqing (No. cstc2017jcyjBX0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, D., Peng, J., Wang, J. et al. Effect of Mn Modification on Microstructure and Mechanical Properties of Magnesium Alloy with Low Gd Content. Met. Mater. Int. 27, 1483–1492 (2021). https://doi.org/10.1007/s12540-019-00588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00588-6

Keywords

Navigation