Skip to main content
Log in

Corrosion Inhibition of Cu Coated with Ni and Annealed with Flow of Oxygen in NaCl Solution as a Function of Annealing Temperature

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work we report attempts to inhibit corrosion of Cu substrates in 0.6 M NaCl solution by coating with 100 nm Ni film and post-annealing with oxygen at different temperatures, in order to convert the nickel to nickel oxide. Electrochemical impedance spectroscopy (EIS) and polarization measurement analyses were used to obtain electrochemical data. The correctness of the EIS results was confirmed by Kramers–Kronig transformation, while fitting of the data (Nyquist and Bode diagrams) to suitable equivalent electrical circuits showed that the highest corrosion enhancement is achieved for the Ni/Cu sample annealed at 473 K, resulting in a 98% corrosion inhibition enhancement factor (η%). Polarization measurements also showed that this sample has the lowest corrosion current density, lowest corrosion rate and highest corrosion potential with a 97% corrosion inhibition efficiency factor (PE%). Consistent results are achieved for EIS and polarization measurements which are then correlated with the nanostructure of the films using X-ray diffraction and atomic force microscope analyses.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Rahmouni, M. Keddam, A. Srhiri, H. Takenouti, Corros. Sci. 47, 3249–3266 (2005)

    CAS  Google Scholar 

  2. K.M. Ismail, A.M. Fathi, W.A. Badawy, Corrosion 60, 795–803 (2004)

    CAS  Google Scholar 

  3. A. Varea, E. Pellicer, S. Pané, Bradley J. Nelson, S. Suriñach, M. Dolors Baró, J. Sort, Int. J. Electrochem. Sci. 7, 1288–1302 (2012)

    CAS  Google Scholar 

  4. C.-H. Chang, T.-C. Huang, C.-W. Peng, T.-C. Yeh, H.-I. Lu, W.-I. Hung, C.-J. Weng, T.-I. Yang, J.-M. Yeh, Carbon 50, 5044–5051 (2012)

    CAS  Google Scholar 

  5. G. Kear, B.D. Barker, F.C. Walsh, Corros. Sci. 46, 109–135 (2004)

    CAS  Google Scholar 

  6. P.A. Selembo, M.D. Merrill, B.E. Logan, J. Power Sour. 190, 271–278 (2009)

    CAS  Google Scholar 

  7. G. Gece, S. Bilgiç, Corros. Sci. 52, 3435–3443 (2010)

    CAS  Google Scholar 

  8. K.-H. Ahn, K.-G. Song, H.-Y. Cha, I.-T. Yeom, Desalination 122, 77–84 (1999)

    CAS  Google Scholar 

  9. J. McGeough, M. Leu, K. Rajurkar, A. De Silva, Q. Liu, CIRP Ann. 50, 499–514 (2001)

    Google Scholar 

  10. S. Rossi, F. Deflorian, F. Venturini, J. Mater. Process. Technol. 148, 301–309 (2004)

    CAS  Google Scholar 

  11. D. Landolt, Corrosion and Surface Chemistry of Metals (EPFL Press, Lausanne, 2007)

    Google Scholar 

  12. G. Yu, L. Zeng, F. Zhu, C. Chai, W. Lai, J. Appl. Phys. 90, 4039–4043 (2001)

    CAS  Google Scholar 

  13. S. Nandy, U. Maiti, C. Ghosh, K. Chattopadhyay, J. Phys.: Condens. Matter 21, 115804 (2009)

    CAS  Google Scholar 

  14. B. Subramanian, M.M. Ibrahim, V. Senthilkumar, K. Murali, V. Vidhya, C. Sanjeeviraja, M. Jayachandran, Physica B 403, 4104–4110 (2008)

    CAS  Google Scholar 

  15. T. Manago, T. Ono, H. Miyajima, I. Yamaguchi, K. Kawaguchi, M. Sohma, Thin Solid Films 374, 21–26 (2000)

    CAS  Google Scholar 

  16. K.X. Steirer, J.P. Chesin, N.E. Widjonarko, J.J. Berry, A. Miedaner, D.S. Ginley, D.C. Olson, Org. Electron. 11, 1414–1418 (2010)

    CAS  Google Scholar 

  17. G.H. Guai, M.Y. Leiw, C.M. Ng, C.M. Li, Adv. Energy Mater. 2, 334–338 (2012)

    CAS  Google Scholar 

  18. J.-K. Kang, S.-W. Rhee, Thin Solid Films 391, 57–61 (2001)

    CAS  Google Scholar 

  19. H. Lu, G. Scarel, M. Alia, M. Fanciulli, S.-J. Ding, D.W. Zhang, Appl. Phys. Lett. 92, 222907 (2008)

    Google Scholar 

  20. I. Porqueras, E. Bertran, Thin Solid Films 398, 41–44 (2001)

    Google Scholar 

  21. D. Jiang, J. Qin, X. Wang, S. Gao, Q. Liang, J. Zhao, Vacuum 86, 1083–1086 (2012)

    CAS  Google Scholar 

  22. Z. Jiao, M. Wu, Z. Qin, H. Xu, Nanotechnology 14, 458 (2003)

    CAS  Google Scholar 

  23. J. Singh, D.E. Wolfe, J. Mater. Sci. 40, 1–26 (2005)

    CAS  Google Scholar 

  24. M. Schönleber, D. Klotz, E. Ivers-Tiffée, Electrochim. Acta 131, 20–27 (2014)

    Google Scholar 

  25. B.A. Boukamp, Solid State Ion. 62, 131–141 (1993)

    CAS  Google Scholar 

  26. B. Díaz, J. Światowska, V. Maurice, A. Seyeux, B. Normand, E. Härkönen, M. Ritala, P. Marcus, Electrochim. Acta 56, 10516–10523 (2011)

    Google Scholar 

  27. Y. Zhang, D. Seghete, A. Abdulagatov, Z. Gibbs, A. Cavanagh, R. Yang, S. George, Y.-C. Lee, Surf. Coat. Technol. 205, 3334–3339 (2011)

    CAS  Google Scholar 

  28. H.S. Bahari, H. Savaloni, Mater. Res. Express 6, 086570 (2019)

    CAS  Google Scholar 

  29. E.E. Stansbury, R.A. Buchanan, Fundamentals of Electrochemical Corrosion (ASM International, Russell, 2000)

    Google Scholar 

  30. G. Honjo, J. Phys. Soc. Jpn. 4, 330–333 (1949)

    CAS  Google Scholar 

  31. T. Barr, J. Vac. Sci. Technol. 14, 660–665 (1977)

    CAS  Google Scholar 

  32. J. Iijima, J.-W. Lim, S.-H. Hong, S. Suzuki, K. Mimura, M. Isshiki, Appl. Surf. Sci. 253, 2825–2829 (2006)

    CAS  Google Scholar 

  33. I. Platzman, R. Brener, H. Haick, R. Tannenbaum, J. Phys. Chem. C 112, 1101–1108 (2008)

    CAS  Google Scholar 

  34. P. Keil, D. Lützenkirchen-Hecht, R. Frahm, AIP Conf. Proc. 882, 490–492 (2007)

    CAS  Google Scholar 

  35. D. Santos-Cruz, S. Mayén-Hernández, F. de Moure-Flores, J. Campos-Álvarez, M. Pal, J. Santos-Cruz, Results Phys. 7, 4140–4144 (2017)

    Google Scholar 

  36. S.-K. Lee, H.-C. Hsu, W.-H. Tuan, Mater. Res. Express 19, 51–56 (2016)

    CAS  Google Scholar 

  37. K. Khojier, H. Savaloni, E. Amani, Appl. Surf. Sci. 289, 564–570 (2014)

    CAS  Google Scholar 

  38. K. Khojier, H. Savaloni, Vacuum 84, 770–777 (2010)

    CAS  Google Scholar 

  39. H.Y. Ma, C. Yang, S.H. Chen, Y.L. Jiao, S.X. Huang, D.G. Li, J.L. Luo, Electrochim. Acta 48, 4277–4289 (2003)

    CAS  Google Scholar 

  40. O.E. Barcia, O.R. Mattos, Electrochim. Acta 35, 1601–1608 (1990)

    CAS  Google Scholar 

  41. O.E. Barcia, O.R. Mattos, N. Pebere, B. Tribollet, J. Electrochem. Soc. 140, 2825–2832 (1993)

    CAS  Google Scholar 

  42. H. Ma, S. Chen, L. Niu, S. Shang, S. Li, S. Zhao, Z. Quan, J. Electrochem. Soc. 148, B208–B216 (2001)

    CAS  Google Scholar 

  43. S.L. Li, Y.G. Wang, S.H. Chen, R. Yu, S.B. Lei, H.Y. Ma, D.X. Liu, Corros. Sci. 41, 1769–1782 (1999)

    CAS  Google Scholar 

  44. M.-S. Hong, I.-J. Park, J.-G. Kim, Met. Mater. Int. 23, 708–714 (2017)

    CAS  Google Scholar 

  45. C. Liu, Q. Bi, A. Leyland, A. Matthews, Corros. Sci. 45, 1257–1273 (2003)

    CAS  Google Scholar 

  46. Y.-S. Kim, S.-H. Kim, J.-G. Kim, Met. Mater. Int. 21, 1013–1022 (2015)

    CAS  Google Scholar 

  47. D.A. Jones, Principles and Prevention of Corrosion, 2nd edn. (Prentice Hall, Upper Saddle River, 1996), pp. 109–113

    Google Scholar 

  48. H.W. Bode, Network Analysis and Feedback Amplifier Design (D. Van Nostrand Company), pp. 303–335 (1945)

  49. H. Saifi, M. Bernard, S. Joiret, K. Rahmouni, H. Takenouti, B. Talhi, Mater. Chem. Phys. 120, 661–669 (2010)

    CAS  Google Scholar 

  50. A. Dermaj, N. Hajjaji, S. Joiret, K. Rahmouni, A. Srhiri, H. Takenouti, V. Vivier, Electrochim. Acta 52, 4654–4662 (2007)

    CAS  Google Scholar 

  51. V.K.W. Grips, V. Ezhil Selvi, H.C. Barshilia, K.S. Rajam, Electrochim. Acta 51, 3461–3468 (2006)

    CAS  Google Scholar 

  52. Z. Chai, J. Li, X. Lu, D. He, RSC Adv. 4, 39365–39371 (2014)

    CAS  Google Scholar 

  53. S.S. Mirhashemihaghighi, J. Maurice, V. Seyeux, A. Klein, L.H. Harkonen, E. Ritala, M.P. Marcus, J. Electrochem. Soc. 162, C377–C384 (2015)

    CAS  Google Scholar 

  54. S. Mirhashemihaghighi, J. Światowska, V. Maurice, A. Seyeux, S. Zanna, E. Salmi, M. Ritala, P. Marcus, Corros. Sci. 106, 16–24 (2016)

    CAS  Google Scholar 

  55. S.-H. Lee, J.-G. Kim, J.-Y. Koo, Eng. Fail. Anal. 17, 1424–1435 (2010)

    CAS  Google Scholar 

  56. Y.-W. Jang, J.-H. Hong, J.-G. Kim, Met. Mater. Int. 15, 623–629 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the University of Tehran. We wish to thank professor F. Placido for his comments and the reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Savaloni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 7.

Fig. 7
figure 7

Expanded XRD patterns of uncoated Cu and Ni/Cu samples annealed at different temperatures with flow of oxygen. a High intensity peaks, b low intensity peaks for Ni/Cu sample annealed at 773 K

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahari, H.S., Savaloni, H. Corrosion Inhibition of Cu Coated with Ni and Annealed with Flow of Oxygen in NaCl Solution as a Function of Annealing Temperature. Met. Mater. Int. 26, 1621–1633 (2020). https://doi.org/10.1007/s12540-019-00422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00422-z

Keywords

Navigation