Skip to main content
Log in

Evolution in Microstructures and Mechanical Properties of Pure Copper Subjected to Severe Plastic Deformation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Considering the great advantage of improving the pressing speed in reducing the number of repeated deformation passes and grain size, high-speed equal channel angular pressing (ECAP) technology has been applied to achieve the perfect distribution of grain size in a sample volume of pure copper. The microstructures and mechanical properties of pure copper suffering ECAP are investigated. The results show that the well refined grains are obtained through three stages, during which the grain reorientation and recrystallization occurs. After ECAP, the volume fraction of high-angle grain boundaries is reduced, but shows an obvious increase in the population for high-pass extruded sample. Besides, ECAP can significantly increase the proportion of the special boundaries probably through the transformation from annealing twins to deformation twins. The tensile strength of ECAP-ed sample greatly increased to 1.87 times larger than that of the annealed bar, and then improved slowly regardless of increasing strain. The relationship between strength and grain size still obeyed Hall–Petch formula. The cloud maps of microhardness distribution illustrated that the hardness is severely improved after the first three passes, but leveled off after that. Besides, the cloud maps also present the moderate inhomogeneity of microhardness with higher values in the edge and lower values towards the center.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103–189 (2000)

    Article  CAS  Google Scholar 

  2. J. Čížek, M. Janeček, T. Krajňák, J. Stráská, P. Hruška, J. Gubicza, H.S. Kim, Acta Mater. 105, 258–272 (2016)

    Article  Google Scholar 

  3. J. Li, F. Li, X. Ma, J. Li, S. Liang, Mater. Sci. Eng. A 732, 53–62 (2018)

    Article  CAS  Google Scholar 

  4. F. Samadpour, G. Faraji, P. Babaie, S.R. Bewsher, M. Mohammadpour, Mater. Sci. Eng. A 718, 412–417 (2018)

    Article  CAS  Google Scholar 

  5. M. Tikhonova, R. Kaibyshev, A. Belyakov, Adv. Eng. Mater. 20, 1700960 (2018)

    Article  Google Scholar 

  6. V.M. Segal, Mater. Sci. Eng. A 338, 331–344 (2002)

    Article  Google Scholar 

  7. R. Valiev, Nat. Mater. 3, 511 (2004)

    Article  CAS  Google Scholar 

  8. F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, E.V. Pereloma, Acta Mater. 52, 4819–4832 (2004)

    Article  CAS  Google Scholar 

  9. W.Z. Han, S.D. Wu, S.X. Li, Y.D. Wang, Mater. Sci. Eng. A 483, 430–432 (2008)

    Article  Google Scholar 

  10. M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda, M. Mabuchi, Mater. Trans. 48, 2336–2339 (2007)

    Article  CAS  Google Scholar 

  11. G.H. Xiao, N.R. Tao, K. Lu, Mater. Sci. Eng. A 513, 13–21 (2009)

    Article  Google Scholar 

  12. H.L. Wang, Z.B. Wang, K. Lu, Acta Mater. 59, 1818–1828 (2011)

    Article  CAS  Google Scholar 

  13. Z. Zhang, W. Pantleon, Acta Mater. 149, 235–247 (2018)

    Article  CAS  Google Scholar 

  14. V.A. Krasnoveikin, V. Skripnyak, A.A. Kozulin, O. Senatova, Adv. Mater. Res. 1040, 107–112 (2014)

    Article  Google Scholar 

  15. B. Cherukuri, R. Srinivasan, Mater. Sci. Forum 539–543, 3655–3660 (2007)

    Article  Google Scholar 

  16. J. Li, F. Li, C. Zhao, H. Chen, X. Ma, J. Li, Mater. Sci. Eng. A 656, 142–150 (2016)

    Article  CAS  Google Scholar 

  17. M. Furukawa, A. Utsunomiya, S. Komura, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Forum 357–359, 431–436 (2001)

    Article  Google Scholar 

  18. S. Komura, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A 297, 111–118 (2001)

    Article  Google Scholar 

  19. L.I. Jiu-Lin, Metallurgical Standardization & Quality 113, 251–265 (2000)

  20. N.J. Burbery, R. Das, W.G. Ferguson, Acta Mater. 108, 355–366 (2016)

    Article  CAS  Google Scholar 

  21. P.C. Yadav, S. Sahu, A. Subramaniam, S. Shekhar, Mater. Sci. Eng. A 715, 295–306 (2018)

    Article  CAS  Google Scholar 

  22. Z. Zhuo, S. Xia, Q. Bai, B. Zhou, J. Mater. Sci. 53, 2844–2858 (2018)

    Article  CAS  Google Scholar 

  23. S. Mandal, A.K. Bhaduri, V. Subramanya Sarma, Mater. Sci. Forum 715, 140–141 (2012)

    Article  Google Scholar 

  24. J.E. Brandenburg, L.A. Barrales-Mora, D.A. Molodov, Acta Mater. 77, 294–309 (2014)

    Article  CAS  Google Scholar 

  25. M.J. Starink, X.G. Qiao, J. Zhang, N. Gao, Acta Mater. 57, 5796–5811 (2009)

    Article  CAS  Google Scholar 

  26. Y. Estrina, Acta Mater. 61, 782–817 (2013)

    Article  Google Scholar 

  27. N. Hansen, X. Huang, G. Winther, Mater. Sci. Eng. A 494, 61–67 (2008)

    Article  Google Scholar 

  28. M. Hoseini, M. Meratian, M.R. Toroghinejad, J.A. Szpunar, Mater. Charact. 61, 1371–1378 (2010)

    Article  CAS  Google Scholar 

  29. S. Biswas, D. Schwen, H. Wang, M. Okuniewski, V. Tomar, Comput. Mater. Sci. 148, 307–319 (2018)

    Article  Google Scholar 

  30. H. Paul, L. Lityńska-Dobrzyńska, M. Prażmowski, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 3836–3851 (2013)

    Article  CAS  Google Scholar 

  31. E. Bagherpour, F. Qods, R. Ebrahimi, H. Miyamoto, Mater. Sci. Eng. A 679, 465–475 (2017)

    Article  CAS  Google Scholar 

  32. C.M. Kuo, C.S. Lin, Scr. Mater. 57, 667–670 (2007)

    Article  CAS  Google Scholar 

  33. D. Terada, H. Houda, N. Tsuji, J. Mater. Sci. 43, 7331–7337 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author expresses his heartfelt thanks to the National Natural Science Foundation of China (No. 51674004 and 51805002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghui Li.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, L., Liang, S. et al. Evolution in Microstructures and Mechanical Properties of Pure Copper Subjected to Severe Plastic Deformation. Met. Mater. Int. 26, 1585–1595 (2020). https://doi.org/10.1007/s12540-019-00395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00395-z

Keywords

Navigation