Skip to main content
Log in

Wear Behavior of Biodegradable Mg–5Zn–1Y–(0–1)Ca Magnesium Alloy in Simulated Body Fluid

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, wear behavior of biodegradable Mg–5Zn–1Y–(0–1)Ca alloys is investigated in simulated body fluid. Wear test is performed using a pin-on-disc system, under three different loads of 10, 20 and 40 N, at ambient temperature; and the whole configuration is exposed to simulated body fluid. The volumetric wear rate and friction coefficient of each alloy are determined. The worn surfaces are analyzed using a scanning electron microscope, equipped with an energy dispersive spectrometer to determine the involved main wear mechanism. The Ca-free alloy contains α-Mg and intermetallic Mg3YZn6, and Ca addition produces another intermetallic Ca2Mg6Zn3. Results show that different wear mechanisms and rates, as well as friction coefficients, are achieved due to the effect of simulated body fluid on the alloys with regards to the different Ca content and the presence of corrosion products. Microscopic studies reveal that abrasion is the dominant wear mechanism taken place in all alloys under all loads. Increasing Ca content leads to wear resistance deterioration while increasing wear load results in decreasing wear rate and friction coefficient of the alloys. The results of the wear rate and friction coefficient of Mg–5Zn–1Y–1Ca alloy exhibit greater instability compared to the other alloys due to its more enhanced corrosion caused by the formation of the intermetallic Ca2Mg6Zn3 particles. In total, Ca-free alloy provides the best wear resistance, especially at the higher wear load.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Cui, L. Sun, R. Zeng, Y. Zheng, S. Li, Sci. China Mater. 61, 607 (2018)

    CAS  Google Scholar 

  2. K.K. Ajith Kumar, U.T.S. Pillai, B.C. Pai, M. Chakraborty, Met. Mater. Int. 19, 1167 (2013)

    CAS  Google Scholar 

  3. L. Tonelli, P. Dolcet, M. Dabal, C. Martini, Wear 404–405, 122 (2018)

    Google Scholar 

  4. S. Koleini, M. Hasbullah Idris, H. Jafari, Mater. Des. 33, 20 (2012)

    CAS  Google Scholar 

  5. F. Qin, G. Xie, Z. Dan, Sh Zhu, I. Seki, Intermetallics 42, 9 (2013)

    Google Scholar 

  6. J. Mol, Asp. Med. 24, 27 (2003)

    Google Scholar 

  7. J.Z. Ilich, J.E. Kerstetter, J. Am. Coll. Nutr. 19, 715 (2000)

    CAS  Google Scholar 

  8. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, Biomaterials 26, 3557 (2005)

    CAS  Google Scholar 

  9. A. Madhan Kumar, S. Fida Hassan, A.A. Sorour, M. Paramsothy, M. Gupta, Met. Mater. Int. 25, 105 (2009)

    Google Scholar 

  10. N. Li, Y. Zheng, J. Mater. Sci. Technol. 29, 489 (2013)

    CAS  Google Scholar 

  11. B. Zhang, Y. Hou, X. Wang, Y. Wang, L. Geng, Mater. Sci. Eng. C 31, 1667 (2011)

    CAS  Google Scholar 

  12. R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Bose, J. Koolen, T.F. Luscher, N. Weissman, R. Waksman, Lancet 369, 1869 (2007)

    CAS  Google Scholar 

  13. B. Smola, L. Joska, V. Březina, I. Stulíková, F. Hnilica, Mater. Sci. Eng. C 32, 659 (2012)

    CAS  Google Scholar 

  14. H. Tapiero, K.D. Tew, Biomed. Pharmacother. 57, 399 (2003)

    CAS  Google Scholar 

  15. L. Cizek, S. Rusz, O. Hilser, R. Śliwa, D. Kuc, T. Tanski, M. Tikocz, Arch. Metall. Mater. 62, 2365 (2017)

    CAS  Google Scholar 

  16. S. Cai, T. Lei, N. Li, F. Feng, Mater. Sci. Eng. C 32, 2570 (2012)

    CAS  Google Scholar 

  17. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Acta Biomater. 6, 626 (2010)

    CAS  Google Scholar 

  18. Y. Sun, B. Zhang, Y. Wang, L. Geng, X. Jiao, Mater. Des. 34, 58 (2012)

    Google Scholar 

  19. Y. Jang, Z. Tan, Ch. Jurey, Zh Xu, Zh Dong, B. Collins, Y. Yun, J. Sankar, Mater. Sci. Eng. C 48, 28 (2015)

    CAS  Google Scholar 

  20. V. Neubert, I. Stulíková, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, J. Pelcová, Mater. Sci. Eng. A 462, 329 (2007)

    Google Scholar 

  21. E. Zhang, W. He, H. Du, K. Yang, Mater. Sci. Eng. A 488, 102 (2008)

    Google Scholar 

  22. S. Naghdali, H. Jafari, M. Malekan, Thermochim. Acta 667, 50 (2018)

    CAS  Google Scholar 

  23. MZh Ge, J.Y. Xiang, Y. Tang, X. Ye, Z. Fan, Y.L. Lu, X.H. Zhang, Surf. Coat. Technol. 337, 501 (2018)

    CAS  Google Scholar 

  24. J. An, R.G. Li, Y. Lu, C.M. Chen, Y. Xu, X. Chen, L.M. Wang, Wear 265, 97 (2008)

    CAS  Google Scholar 

  25. Y. Niu, R. Cui, Y. He, Z. Yu, J. Alloys Compd. 610, 294 (2014)

    CAS  Google Scholar 

  26. D.B. Liu, B. Wu, X. Wang, M.F. Chen, Rare Met. 34, 553 (2015)

    CAS  Google Scholar 

  27. H. Somekava, A. Shimoda, T. Hirayama, T. Matsuoka, T. Mukai, Mater. Trans. 55, 216 (2014)

    Google Scholar 

  28. N.N. Aung, W. Zhou, L.E.N. Lim, N.N. Aung, W. Zhou, L.E.N. Lim, Wear 265, 780 (2008)

    CAS  Google Scholar 

  29. C. Taltavull, P. Rodrigo, B. Torres, A.J. López, J. Rams, Mater. Des. 56, 549 (2014)

    CAS  Google Scholar 

  30. C. Taltalvull, B. Torres, A.J. López, J. Rams, Wear 301, 615 (2013)

    Google Scholar 

  31. H. Li, D.B. Liu, Y. Zhao, F. Jin, M.F. Chen, J. Mater. Eng. Perform. 25, 3890 (2016)

    CAS  Google Scholar 

  32. H. Jafari, F. Rahimi, Z. Sheikhsofla, Mater. Corros. 67, 396 (2015)

    Google Scholar 

  33. M.L. Hu, Q.D. Wang, C.J. Chen, D.D. Yin, W.J. Ding, Z.S. Ji, Mater. Des. 42, 223 (2012)

    CAS  Google Scholar 

  34. G. Peitao, T. Mingyang, Z. Chaoyang, Surf. Coat. Technol. 359, 197 (2019)

    CAS  Google Scholar 

  35. J. Dai, X. Zhang, Q. Yin, Sh Ni, Zh Ba, Zh Wang, J. Magn. Alloy 5, 448 (2017)

    CAS  Google Scholar 

  36. A. Somi Reddy, B.N. Pramila Bai, K.S.S. Murthy, S.K. Biswas, Wear 181–183, 658 (1995)

    Google Scholar 

  37. B.N. Pramila Bai, S.K. Biswas, Acta Metall. Mater. 39, 833 (1991)

    Google Scholar 

  38. N.V. Phuong, B.R. Fazli, S. Moon, Met. Mater. Int. 23, 106 (2017)

    Google Scholar 

  39. M. Bornapour, M. Celikin, M. Cerruti, M. Pekguleryuz, Mater. Sci. Eng. C 35, 267 (2014)

    CAS  Google Scholar 

  40. V. Kumar, L. Li, H. Gui, X. Wang, Q.X. Huang, Q.Y. Li, F. Mokdad, D. Chen, D.Y. Li, Wear 414–415, 126 (2018)

    Google Scholar 

  41. F. Muhaffel, H. Cimenoglu, Surf. Coat. Technol. 357, 822 (2019)

    CAS  Google Scholar 

  42. F. Doost Mohammadi, H. Jafari, Trans. Nonferr. Met. Soc. China 28, 2199 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Shahid Rajaee Teacher Training University for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Jafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, A., Jafari, H. & Ashenai Ghasemi, F. Wear Behavior of Biodegradable Mg–5Zn–1Y–(0–1)Ca Magnesium Alloy in Simulated Body Fluid. Met. Mater. Int. 26, 395–407 (2020). https://doi.org/10.1007/s12540-019-00330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00330-2

Keywords

Navigation