Skip to main content
Log in

Application of Different Diffraction Peak Profile Analysis Methods to Study the Structure Evolution of Cold-Rolled Hexagonal α-Titanium

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper presents a comparison between the “classical” and the modified Williamson–Hall and Warren–Averabach methods applied to an analysis of the microstructure of \(\alpha\)-titanium. The microstructural parameters of cold-rolled titanium specimens were retrieved from analysis of the X-ray diffraction (XRD) peaks. The high-quality XRD patterns were received at the P07 beamline (The High Energy Materials Science) at the German electron synchrotron. The dependence of the crystallite size, the inhomogeneous microstrains, the average dislocation density, the dislocation cut-off radius and some other parameters on the plastic strain were estimated. The results clearly indicate that, due to the consideration of the dislocation contrast effect, the modified models are a much better fit to the experimental data in comparison with the “classical” models. The results of hardness and corrosion resistance measurements of Ti samples can be explained based on the results obtained from the XRD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Roy, V.K. Balla, A. Bandyopadhyay, S. Bose, MgO-doped tantalum coating on Ti: microstructural study and biocompatibility evaluation. ACS Appl. Mater. Interfaces 4(2), 577 (2012)

    Article  CAS  Google Scholar 

  2. S. Prasad, M. Ehrensberger, M.P. Gibson, H. Kim, E.A. Monaco, Biomaterial properties of titanium in dentistry. J. Oral Biosci. 57(4), 192 (2015). https://doi.org/10.1016/j.job.2015.08.001

    Article  Google Scholar 

  3. J.J. Gutierrez Moreno, M. Bonisch, N.T. Panagiotopoulos, M. Calin, D.G. Papageorgiou, A. Gebert, J. Eckert, G.A. Evangelakis, C.E. Lekka, Ab-initio and experimental study of phase stability of Ti–Nb alloys. J. Alloys Compd. 696, 481 (2017). https://doi.org/10.1016/j.jallcom.2016.11.231

    Article  CAS  Google Scholar 

  4. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A 299(1–2), 59 (2001)

    Article  Google Scholar 

  5. M. Hoseini, P. Bocher, A. Shahryari, F. Azari, J.A. Szpunar, H. Vali, On the importance of crystallographic texture in the biocompatibility of titanium based substrate. J. Biomed. Mater. Res. A 102(10), 3631 (2014). https://doi.org/10.1002/jbm.a.35028

    Article  CAS  Google Scholar 

  6. A. Panigrahi, B. Sulkowski, T. Waitz, K. Ozaltin, W. Chrominski, A. Pukenas, J. Horky, M. Lewandowska, W. Skrotzki, M. Zehetbauer, Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation. J. Mech. Behav. Biomed. Mater. 62, 93 (2016)

    Article  CAS  Google Scholar 

  7. C. Kittel, P. McEuen, P. McEuen, Introduction to Solid State Physics, vol. 8 (Wiley, New York, 1996)

    Google Scholar 

  8. J. Friedel, Dislocations: International Series of Monographs on Solid State Physics, vol. 3 (Elsevier, Amsterdam, 2013)

    Google Scholar 

  9. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering, vol. 471660817 (Wiley, London, 2000)

    Google Scholar 

  10. J. Lemaitre, Handbook of Materials Behavior Models, Three-Volume Set: Nonlinear Models and Properties (Elsevier, Amsterdam, 2001)

    Google Scholar 

  11. H. Parvin, M. Kazeminezhad, Two-internal variable thermodynamics modelling of severe plastic deformation: dislocation and flow stress evolutions. Mater. Sci. Technol. 31(14), 1788 (2015)

    Article  CAS  Google Scholar 

  12. R. Mahmoodian, N.S.M. Annuar, G. Faraji, N.D. Bahar, B.A. Razak, M. Sparham, Severe Plastic Deformation of Commercial Pure Titanium (CP-Ti) for Biomedical Applications: A Brief Review, Jom, pp. 1–8 (2017). https://doi.org/10.1007/s11837-017-2672-4

    Article  Google Scholar 

  13. R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3(8), 511 (2004)

    Article  CAS  Google Scholar 

  14. R. Valiev, R.S. Musalimov, High-resolution transmission electron microscopy of nanocrystalline materials. Phys. Met. Metallogr. 78(6), 666 (1994)

    Google Scholar 

  15. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1(1), 22 (1953)

    Article  CAS  Google Scholar 

  16. B. Warren, B. Averbach, The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 21(6), 595 (1950)

    Article  CAS  Google Scholar 

  17. T. Ungár, A. Borbély, The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis. Appl. Phys. Lett. 69(21), 3173 (1996)

    Article  Google Scholar 

  18. T. Ungár, Dislocation model of strain anisotropy. Powder Diffr. 23(2), 125 (2008)

    Article  Google Scholar 

  19. N. Forouzanmehr, M. Nili-Ahmadabadi, M. Bönisch, The analysis of severely deformed pure Fe structure aided by X-ray diffraction profile. Phys. Met. Metallogr. 117(6), 624 (2016). https://doi.org/10.1134/S0031918X16060077

    Article  CAS  Google Scholar 

  20. G. Ashiotis, A. Deschildre, Z. Nawaz, J.P. Wright, D. Karkoulis, F.E. Picca, J. Kieffer, The fast azimuthal integration python library: pyFAI. J. Appl. Crystallogr. 48(2), 510 (2015)

    Article  CAS  Google Scholar 

  21. T. Ungár, G. Tichy, The effect of dislocation contrast on X-ray line profiles in untextured polycrystals. Physica Status Solidi (a) 171(2), 425 (1999)

    Article  Google Scholar 

  22. W.H. Hall, X-ray line broadening in metals. Proc. Phys. Soc. Sect. A 62(11), 741 (1949). https://doi.org/10.1088/0370-1298/62/11/110

    Article  Google Scholar 

  23. M.A. Krivoglaz, Theory of X-Ray and Thermal Neutron Scattering by Real Crystals (Plenum Press, New York, 1969)

    Google Scholar 

  24. I. Dragomir, T. Ungár, Contrast factors of dislocations in the hexagonal crystal system. J. Appl. Crystallogr. 35(5), 556 (2002)

    Article  CAS  Google Scholar 

  25. P. Klimanek, R. Kužel, X-ray diffraction line broadening due to dislocations in non-cubic materials. I. general considerations and the case of elastic isotropy applied to hexagonal crystals. J. Appl. Crystallogr. 21(1), 59 (1988)

    Article  Google Scholar 

  26. T. Ungár, O. Castelnau, G. Ribárik, M. Drakopoulos, J. Béchade, T. Chauveau, A. Snigirev, I. Snigireva, C. Schroer, B. Bacroix, Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis. Acta Materialia 55(3), 1117 (2007)

    Article  Google Scholar 

  27. J.I. Langford, A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102 (1978)

    Article  CAS  Google Scholar 

  28. M. Wilkens, Theoretical aspects of kinematical X-ray diffraction profiles from crystals containing dislocation distributions (Fourier transform of X-ray diffraction line profiles from crystals with dislocations). NBS Fundamental Aspects of Dislocation Theory, vol. 2 (1970)

  29. Y.I. Sirotin, M. Shaskolskaya, Basic Crystallophysics (Science, Moscow, 1979)

    Google Scholar 

  30. D. Tromans, Elastic anisotropy of HCP metal crystals and polycrystals. Int. J. Res. Rev. Appl. Sci 6(4), 462 (2011)

    Google Scholar 

  31. S.H. Nedjad, F.H. Nasab, M.M. Garabagh, S. Damadi, M.N. Ahmadabadi, X-ray diffraction study on the strain anisotropy and dislocation structure of deformed lath martensite. Metall. Mater. Trans. A 42(8), 2493 (2011)

    Article  Google Scholar 

  32. Z. Fan, B. Jóni, L. Xie, G. Ribárik, T. Ungár, Dislocation structure in textured zirconium tensile-deformed along rolling and transverse directions determined by X-ray diffraction line profile analysis. J. Nucl. Mater. 502(March), 301 (2018). https://doi.org/10.1016/j.jnucmat.2018.02.026

    Article  CAS  Google Scholar 

  33. I. Dragomir, D. Li, G. Castello-Branco, H. Garmestani, R. Snyder, G. Ribarik, T. Ungar, Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction. Mater. Charact. 55(1), 66 (2005)

    Article  CAS  Google Scholar 

  34. J. Gubicza, I.C. Dragomir, G. Ribárik, Y.T. Zhu, R. Valiev, T. Ungár, in Materials Science Forum, vol. 414 (Trans Tech Publ, 2003), pp. 229–234

  35. V. Stolyarov, Y. Zhu, T. Lowe, R. Islamgaliev, R. Valiev, A two step spd processing of ultrafine-grained titanium. Nanostruct. Mater. 11(7), 947 (1999)

    Article  CAS  Google Scholar 

  36. H. Mecking, U. Kocks, Kinetics of flow and strain-hardening. Acta Metall. 29(11), 1865 (1981)

    Article  CAS  Google Scholar 

  37. G.T. Gray III, High-strain-rate deformation: mechanical behavior and deformation substructures induced. Annu. Rev. Mater. Res. 42, 285 (2012)

    Article  CAS  Google Scholar 

  38. L. Tushinskii, Structural theory of structural strength of materials, in NGTU, Novosibirsk (2004) (in Russian)

Download references

Acknowledgements

This work was supported by Ministry of Education and Science of the Russian Federation according to Federal Task 11.7662.2017/BCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Ivanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, I.V., Lazurenko, D.V., Stark, A. et al. Application of Different Diffraction Peak Profile Analysis Methods to Study the Structure Evolution of Cold-Rolled Hexagonal α-Titanium. Met. Mater. Int. 26, 83–93 (2020). https://doi.org/10.1007/s12540-019-00309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00309-z

Keywords

Navigation