Skip to main content
Log in

Evolution of the Structure–Phase State of Quenched Ti–10V–2Fe–3Al Alloy during Aging

  • Published:
Inorganic Materials Aims and scope

Abstract—

The evolution of the structure, phase composition, and hardness of quenched Ti–10V–2Fe–3Al titanium alloy during aging at a temperature of 500°C has been studied using scanning electron microscopy, X-ray diffraction, and hardness measurements. The variations in the lattice parameters of primary and secondary α-phases during aging of the alloy have been analyzed for the first time by X-ray diffraction using the profile analysis method. The results demonstrate that the expected redistribution of the alloying elements between the phases during aging has a systematic effect on the variation in their lattice parameters. We have evaluated the kinetics of the variation in the particle size of the secondary α-phase during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Boyer, R.R. and Briggs, R.D., The use of β titanium alloys in the aerospace industry, J. Mater. Eng. Perform., 2005, vol. 14, pp. 681–685.https://doi.org/10.1361/105994905X75448

    Article  CAS  Google Scholar 

  2. Cotton, J.D., Briggs, R.D., Boyer, R.R., Tamirisakandala, S., Russo, P., Shchetnikov, N., and Fanning, J.C., State of the art in beta titanium alloys for airframe applications, JOM, 2015, vol. 67, pp. 1281–1303.https://doi.org/10.1007/s11837-015-1442-4

    Article  CAS  Google Scholar 

  3. Chen, C.C. and Boyer, R.R., Practical considerations for manufacturing high-strength Ti–10V–2Fe–3A1 alloy forgings, JOM, 1979, vol. 31, pp. 33–39.https://doi.org/10.1007/BF03354533

    Article  CAS  Google Scholar 

  4. Zwicker, U., Titan und Titanlegierungen, Berlin: Springer, 1974, p. 512.

    Book  Google Scholar 

  5. Collings, W., The Physical Metallurgy of Titanium Alloys, Metals Park: American Society for Metals, 1984.

    Google Scholar 

  6. Maeda, T. and Flower, H.M., Element partitioning behavior in commercial β titanium alloys, Proc. 11th World Conf. on Titanium, Kyoto, 2007, pp. 443–46.

  7. Barriobero-Vila, P., Requena, G., Buslaps, T., Alfeld, M., and Boesenberg, U., Role of element partitioning on the α–β phase transformation kinetics of a bi-modal Ti–6Al–6V–2Sn alloy during continuous heating, J. Alloys Compd., 2015, vol. 626, pp. 330–339.https://doi.org/10.1016/j.jallcom.2014.11.176

    Article  CAS  Google Scholar 

  8. Li, T., Ahmed, M., Sha, G., Shi, R., Casillas, G., Yen, H.W., and Cairney, J.M., The influence of partitioning on the growth of intragranular α in near-β Ti alloys, J. Alloys Compd., 2015, vol. 643, pp. 212–222.https://doi.org/10.1016/j.jallcom.2015.04.143

    Article  CAS  Google Scholar 

  9. Li, P., Zhang, T., Sun, X., Zhang, H., Wang, D., Sun, Q., and Sun, J., Secondary hardening behavior in Ti alloy, Mater. Sci. Eng., A, 2019, vol. 759, pp. 640–647.https://doi.org/10.1016/j.msea.2019.05.070

    Article  CAS  Google Scholar 

  10. Ivasishin, O.M., Markovsky, P.E., Semiatin, S.L., and Ward, C.H., Aging response of coarse and fine-grained β titanium alloys, Mater. Sci. Eng., A, 2005, vol. 405, pp. 296–305.https://doi.org/10.1016/j.msea.2005.06.027

    Article  CAS  Google Scholar 

  11. Nag, S., Banerjee, R., Srinivasan, R., Hwang, J.Y., Harper, M., and Fraser, H.L., ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy, Acta Mater., 2009, vol. 57, pp. 2136–2147.https://doi.org/10.1016/j.actamat.2009.01.007

    Article  CAS  Google Scholar 

  12. Wang, C.Y., Yang, L.W., Cui, Y.W., and Pérez-Prado, M.T., High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys, Mater. Des., 2018, vol. 137, pp. 371–383.https://doi.org/10.1016/j.matdes.2017.10.029

    Article  CAS  Google Scholar 

  13. Zeng, L.R., Chen, H.L., Li, X., Lei, L.M., and Zhang, G.P., Influence of alloy element partitioning on strength of primary α phase in Ti–6Al–4V alloy, J. Mater. Sci. Technol., 2018, vol. 34, pp. 782–787.https://doi.org/10.1016/j.jmst.2017.07.016

    Article  Google Scholar 

  14. Zou, C., Li, J., Wang, W.Y., Zhang, Y., Tang, B., Wang, H., and Xu, D., Revealing the local lattice strains and strengthening mechanisms of Ti alloys, Comput. Mater. Sci., 2018, vol. 152, pp. 169–177.https://doi.org/10.1016/j.commatsci.2018.05.028

    Article  CAS  Google Scholar 

  15. Williams, J.C., Baggerly, R.G., and Paton, N.E., Deformation behavior of HCP Ti–Al alloy single crystals, Metall. Mater. Trans. A, 2002, vol. 33, pp. 837–850.https://doi.org/10.1007/s11661-002-0153-y

    Article  Google Scholar 

  16. Zaefferer, S., A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture, Mater. Sci. Eng., A, 2003, vol. 344, pp. 20–30.https://doi.org/10.1016/S0921-5093(02)00421-5

    Article  Google Scholar 

  17. Kwasniak, P., Garbacz, H., and Kurzydlowski, K.J., Solid solution strengthening of hexagonal titanium alloys: restoring forces and stacking faults calculated from first principles, Acta Mater., 2016, vol. 102, pp. 304–314.https://doi.org/10.1016/j.actamat.2015.09.041

    Article  CAS  Google Scholar 

  18. TOPAS v3, General Profile and Structure Analysis Software for Powder Diffraction Data, User’s Manual, Karlsruhe: Bruker AXS, 2005.

  19. Coelho, A.A., Indexing of powder diffraction patterns by iterative use of singular value decomposition, J. Appl. Crystallogr., 2003, vol. 36, pp. 86–95.https://doi.org/10.1107/S0021889802019878

    Article  CAS  Google Scholar 

  20. Mittemeijer, E.J. and Scardi, P., Diffraction Analysis of the Microstructure of Materials, Berlin: Springer, 2004.

    Book  Google Scholar 

  21. Kalienko, M.S., Volkov, A.V., and Zhelnina, A.V., Use of full-profile X-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys, Crystallogr. Rep., 2020, vol. 65, pp. 412–416.https://doi.org/10.1134/S1063774520020121

    Article  CAS  Google Scholar 

  22. Uvarov, V. and Popov, I., Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials, Mater. Charact., 2013, vol. 85, pp. 111–123.https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  23. Kar, S.K., Ghosh, A., Fulzele, N., and Bhattacharjee, A., Quantitative microstructural characterization of a near beta Ti alloy, Ti-5553 under different processing conditions, Mater. Charact., 2013, vol. 81, pp. 37–48.https://doi.org/10.1016/j.matchar.2013.03.016

    Article  CAS  Google Scholar 

  24. Du, Z., Xiao, S., Xu, L., Tian, J., Kong, F., and Chen, Y., Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy, Mater. Des., 2014, vol. 55, pp. 183–190.https://doi.org/10.1016/j.matdes.2013.09.070

    Article  CAS  Google Scholar 

  25. Chen, F.W., Xu, G., Zhang, X.Y., Zhou, K.C., and Cui, Y., Effect of ? morphology on the diffusional β ↔ α transformation in Ti–55531 during continuous heating: dissection by dilatometer test, microstructure observation and calculation, J. Alloys Compd., 2017, vol. 702, pp. 352–365.https://doi.org/10.1016/j.jallcom.2017.01.209

    Article  CAS  Google Scholar 

  26. Saunders, N., Kucherenko, S., Li, X., Miodownik, A.P., and Schille, J.P., A new computer program for predicting materials properties, J. Phase Equilib., 2001, vol. 22, pp. 463–469.https://doi.org/10.1361/105497101770333036

    Article  CAS  Google Scholar 

  27. Li, P., Sun, X., Zhang, T., Zhang, H., Wang, D., Sun, Q., and Sun, J., Adaptive volume control in titanium alloy for high temperature performance, Materials, 2019, vol. 12, pp. 3950–3958.https://doi.org/10.3390/ma12233950

    Article  CAS  PubMed Central  Google Scholar 

  28. Raghunathan, S.L., Stapleton, A.M., Dashwood, R.J., Jackson, M., and Dye, D., Micromechanics of Ti–10V–2Fe–3Al: in situ synchrotron characterisation and modelling, Acta Mater., 2007, vol. 55, no. 20, pp. 6861–6872.https://doi.org/10.1016/j.actamat.2007.08.049

    Article  CAS  Google Scholar 

  29. Nakajima, H., Yusa, K., and Kondo, Y., Diffusion of iron in a diluted α-Ti–Fe alloy, Scr. Mater., 1996, vol. 34, pp. 249–253.https://doi.org/10.1016/1359-6462(95)00511-0

    Article  CAS  Google Scholar 

  30. Xu, W.W., Shang, S.L., and Zhou, B.C., A first-principles study of the diffusion coefficients of alloying elements in dilute α-Ti alloys, Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 16870–16881.https://doi.org/10.1039/C6CP01899H

    Article  CAS  PubMed  Google Scholar 

  31. Aurelio, G., Guillermet, A.F., Cuello, G.J., and Campo, J., Metastable phases in the Ti–V system: part I. Neutron diffraction study and assessment of structural properties, Metall. Mater. Trans. A, 2002, vol. 33, pp. 1307–1317.https://doi.org/10.1007/s11661-002-0057-x

    Article  Google Scholar 

  32. Ahmed, T. and Flower, H.M., Partial isothermal sections of Ti–Al–V ternary diagram, Mater. Sci. Technol., 1994, vol. 10, pp. 272–288.https://doi.org/10.1179/mst.1994.10.4.272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zhelnina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelnina, A.V., Kalienko, M.S., Shchetnikov, N.V. et al. Evolution of the Structure–Phase State of Quenched Ti–10V–2Fe–3Al Alloy during Aging. Inorg Mater 57, 427–434 (2021). https://doi.org/10.1134/S0020168521040166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521040166

Keywords:

Navigation