Skip to main content
Log in

Electrochemical and Spectroscopic Study on the Corrosion of Ti–5Al and Ti–5Al–5Cu in Chloride Solutions

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, manufacturing of Ti–5Al and Ti–5Al–5Cu alloys were accomplished employing mechanical alloying technique. The corrosion resistance in 3.5 wt% NaCl solution of Ti–5Al and Ti–5Al–5Cu alloys was investigated using cyclic polarization (CPP), electrochemical impedance spectroscopy (EIS) and chronoamperometric current–time measurements. The corroded surfaces of Ti–5Al and Ti–5Al–5Cu were examined by the use of a scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that Ti–5Al suffers both uniform and pitting corrosion, particularly with prolonging the time of exposure period in the chloride solution. While, the addition of Cu, Ti–5Al–5Cu alloy, increases the intensity of uniform corrosion and decreases the probability of pitting attack. Prolonging the immersion time to 48 h before measurement decreases the corrosion of Ti–5Al alloy, while increases the corrosion of Ti–5Al–5Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Suryanarayana, Recent developments in mechanical alloying. Rev. Adv. Mater. Sci. 18, 203–211 (2008)

    CAS  Google Scholar 

  2. J.S. Benjamin, Mechanical alloying-A prospective. Met. Powder Rep. 45, 122–127 (1990)

    Article  Google Scholar 

  3. C.C. Koch, Intermetallic matrix composites prepared by mechanical alloying—a review. Mater. Sci. Eng. A 244, 39–48 (1998)

    Article  Google Scholar 

  4. H.D.K.H. Bhadeshia, Mechanically alloyed metals. Mater. Sci. Technol. 1, 1404–1411 (2000)

    Article  Google Scholar 

  5. M.A. Shaikh et al., Alloying of immiscible Ge with Al by ball milling. Mater. Lett. 57, 3681–3685 (2003)

    Article  CAS  Google Scholar 

  6. E. Ma, M. Atzmon, Phase transformations induced by mechanical alloying in a binary system. Mater. Chem. Phys. 39, 249–267 (1995)

    Article  CAS  Google Scholar 

  7. C.C. Koch, J.D. Whittenberger, Review: mechanical milling/alloying of Intermetallic. Intermetallics 4, 339–355 (1996)

    Article  CAS  Google Scholar 

  8. Yuhua Li, Chao Yang, Haidong Zhao, Qu Shengguan, Xiaoqiang Li, Yuanyuan Li, New developments of Ti-based alloys for biomedical applications. Materials 7(3), 1709–1800 (2014)

    Article  Google Scholar 

  9. S. Gorsse, D.B. Miracle, Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 51, 2427–2442 (2003)

    Article  CAS  Google Scholar 

  10. R.W. Hayes, G.B. Viswanathan, M.J. Mills, Creep behavior of Ti–6Al–2Sn–4Zr–2Mo: the effect of nickel on creep deformation and microstructure. Acta Mater. 50, 4953–4963 (2002)

    Article  CAS  Google Scholar 

  11. H. Zhang, H. Kou, J. Yang, D. Huang, H. Nan, J. Li, Microstructure evolution and tensile properties of Ti–6.5Al–2Zr–Mo–V alloy processed with thermo hydrogen treatment. Mater. Sci. Eng. A 619, 274–280 (2014)

    Article  CAS  Google Scholar 

  12. H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng. C 26, 1269–1277 (2006)

    Article  CAS  Google Scholar 

  13. L.C. Zhang, H. Attar, Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv. Eng. Mater. 18, 463–475 (2016)

    Article  CAS  Google Scholar 

  14. J. Pang, D.J. Blackwood, Corrosion of titanium alloys in high temperature near anaerobic seawater. Corros. Sci. 105, 17–24 (2016)

    Article  CAS  Google Scholar 

  15. I.V. Gorynin, Titanium alloys for marine application. Mater. Sci. Eng. A 263, 112–116 (1999)

    Article  Google Scholar 

  16. M.F. Erinosho, E.T. Akinlabi, S. Pityana, Microstructure and corrosion behaviour of laser metal deposited Ti6Al4V/Cu composites in 3.5% sea water. Mater. Today Proc. 2, 1166–1174 (2015)

    Article  Google Scholar 

  17. L.L.G. da Silva, M. Ueda, M.M. Silva et al., Corrosion behavior of Ti–6Al–4V alloy treated by plasma immersion ion implantation process. Surf. Coat. Technol. 201, 8136–8139 (2007)

    Article  Google Scholar 

  18. H. Ahn, D. Lee, K.-M. Lee et al., Oxidation behavior and corrosion resistance of Ti–10Ta–10Nb alloy. Surf. Coat. Technol. 202, 5784–5789 (2008)

    Article  CAS  Google Scholar 

  19. R. Narayanan, S.K. Seshadri, Point defect model and corrosion of anodic oxide coatings on Ti–6Al–4V. Corros. Sci. 50, 1521–1529 (2008)

    Article  CAS  Google Scholar 

  20. Y. Li, L. Qu, F. Wang, The electrochemical corrosion behavior of TiN and (Ti, Al)N coatings in acid and salt solution. Corros. Sci. 45, 1367–1381 (2003)

    Article  CAS  Google Scholar 

  21. L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho et al., Surface characterization of oxides grown on the Ti–13Nb–13Zr alloy and their corrosion protection. Corros. Sci. 72, 35–40 (2013)

    Article  CAS  Google Scholar 

  22. E.S.M. Sherif, A.A. Almajid, F.H. Latif, H. Junaedi, Effects of graphite on the corrosion behavior of aluminum-graphite composite in sodium chloride solutions. Int. J. Electrochem. Sci. 6, 1085–1099 (2011)

    CAS  Google Scholar 

  23. E.S.M. Sherif, Effects of exposure time on the anodic dissolution of Monel-400 in aerated stagnant sodium chloride solutions. J. Solid State Electrochem. 16, 891–899 (2012)

    Article  CAS  Google Scholar 

  24. F.H. Latief, E.S.M. Sherif, A.A. Almajid, H. Junaedi, Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior. J. Anal. Appl. Pyrolysis 92, 485–492 (2011)

    Article  CAS  Google Scholar 

  25. E.S.M. Sherif, J.H. Potgieter, J.D. Comins, L. Cornish, P.A. Olubambi, C.N. Machio, The beneficial effect of ruthenium additions on the passivation of duplex stainless steel corrosion in sodium chloride solutions. Corros. Sci. 51, 1364–1371 (2009)

    Article  CAS  Google Scholar 

  26. El-Sayed M. Sherif, Abdulhakim A. Almajid, Corrosion of magnesium/manganese alloy in chloride solutions and its inhibition by 5-(3-aminophenyl)-tetrazole. Int. J. Electrochem. Sci. 6, 2131–2148 (2011)

    Google Scholar 

  27. K.A. Khalil, E.S.M. Sherif, A.A. Almajid, Corrosion passivation in simulated body fluid of magnesium/hydroxyapatite nanocomposites sintered by high frequency induction heating. Int. J. Electrochem. Sci. 6, 6184–6199 (2011)

    CAS  Google Scholar 

  28. W.A. Badawy, F.M. Al-Kharafi, A.A. El-Azab, Electrochemical behaviour and corrosion inhibition of Al, Al-6061 and Al–Cu in neutral aqueous solutions. Corros. Sci. 41, 709–727 (1999)

    Article  CAS  Google Scholar 

  29. J.W. Diggle, T.C. Downie, C. Goulding, The dissolution of porous oxide films on aluminium. Electrochim. Acta 15, 1079–1093 (1970)

    Article  CAS  Google Scholar 

  30. W.A. Badawy, M.S. El-Basiouny, M.M. Ibrahim, Kinetics of the dissolution of phosphoric acid anodized aluminium as revealed from impedance measurements in phosphate media. Indian J. Technol. 24, 1–6 (1986)

    CAS  Google Scholar 

  31. F.D. Wall, M.A. Martinez, J.J. Vandenavyle, Relationship between induction time for pitting and pitting potential for high-purity aluminum. J. Electrochem. Soc. 151, B354–B358 (2004)

    Article  CAS  Google Scholar 

  32. C.M.A. Brett, I.A.R. Gomes, J.P.S. Martins, The electrochemical behaviour and corrosion of aluminium in chloride media. The effect of inhibitor anions. Corros. Sci. 36, 915–923 (1994)

    Article  CAS  Google Scholar 

  33. F.M. Al-Kharafi, W.A. Badawy, Corrosion and passivation of Al and Al-Si alloys in nitric acid solutions II—Effect of chloride ions. Electrochim. Acta 40, 1811–1817 (1995)

    Article  CAS  Google Scholar 

  34. F. Hunkeler, G.S. Frankel, H. Bohni, Technical note: on the mechanism of localized corrosion. Corrosion (Houston) 43, 189–191 (1987)

    Article  CAS  Google Scholar 

  35. N. Sato, The stability of localized corrosion. Corros. Sci. 37, 1947–1967 (1995)

    Article  CAS  Google Scholar 

  36. M.M. Mazhar, W.A. Badawy, M.M. Abou-Romia, Impedance studies of corrosion resistance of aluminium in chloride media. Surf. Coat. Technol. 29, 337–345 (1987)

    Google Scholar 

  37. R.T. Foley, T.H. Nguyen, The chemical nature of aluminum corrosion-V. Energy transfer in aluminum dissolution. J. Electrochem. Soc. 129, 464–467 (1982)

    Article  CAS  Google Scholar 

  38. L. Tomcsanyi, K. Varga, I. Bartik, G. Horanyi, E. Maleczki, Electrochemical study of the pitting corrosion of aluminium and its alloys—II. Study of the interaction of chloride ions with a passive film on aluminium and initiation of pitting corrosion. Electrochim. Acta 34, 855–859 (1989)

    Article  CAS  Google Scholar 

  39. N. Alharthi, E.S.M. Sherif, H.S. Abdo, S. Zein El Abedin, Effect of nickel content on the corrosion resistance of iron-nickel alloys in concentrated hydrochloric acid pickling solutions. Adv. Mater. Sci. Eng. 2017, 1–8 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed M. Sherif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherif, ES.M., Latief, F.H., Abdo, H.S. et al. Electrochemical and Spectroscopic Study on the Corrosion of Ti–5Al and Ti–5Al–5Cu in Chloride Solutions. Met. Mater. Int. 25, 1511–1520 (2019). https://doi.org/10.1007/s12540-019-00306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00306-2

Keywords

Navigation