Skip to main content
Log in

Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ TR ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as TR increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn–Cr–O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at TR ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at TR = 500 °C, so noticeable edge cracks formed at TR ≥ 600 °C. At TR = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at TR = 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, J. Alloys Compd. 728, 1235 (2017)

    Article  CAS  Google Scholar 

  2. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    Article  CAS  Google Scholar 

  3. Y. Zhao, D.H. Lee, M.Y. Seok, J.A. Lee, M.P. Phaniraj, J.Y. Suh, H.Y. Ha, J.Y. Kim, U. Ramamurty, J. Jang, Scr. Mater. 135, 54 (2017)

    Article  CAS  Google Scholar 

  4. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004)

    Article  Google Scholar 

  5. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743 (2013)

    Article  CAS  Google Scholar 

  6. B. Dodd, P. Boddington, J. Mech. Work. Technol. 3, 239 (1980)

    Article  CAS  Google Scholar 

  7. P. Lan, H. Tang, J. Zhang, Mater. Sci. Eng. A 660, 127 (2016)

    Article  CAS  Google Scholar 

  8. M.H. Han, S. Lee, N.J. Kim, K.J. Lee, T. Chung, G. Byun, Mater. Sci. Eng. A 264, 47 (1999)

    Article  Google Scholar 

  9. H.B. Xie, Z.Y. Jiang, W.Y.D. Yuen, Fatigue Fract. Eng. Mater. Struct. 36, 1130 (2013)

    Article  Google Scholar 

  10. B. Hwang, H.S. Lee, Y.G. Kim, S. Lee, Mater. Sci. Eng. A 402, 177 (2005)

    Article  Google Scholar 

  11. S.S. Sohn, B.J. Lee, J.H. Kwak, S. Lee, Metall. Mater. Trans. A 45, 3844 (2014)

    Article  CAS  Google Scholar 

  12. A. Gali, E.P. George, Intermetallics 39, 74 (2013)

    Article  CAS  Google Scholar 

  13. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Mater. Des. 133, 122 (2017)

    Article  CAS  Google Scholar 

  14. N.D. Stepanov, D.G. Shaysultanov, NYu. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, M.A. Tikhonovsky, Mater. Sci. Eng. A 636, 188 (2015)

    Article  CAS  Google Scholar 

  15. M. Ganesan, D. Dye, P.D. Lee, Metall. Mater. Trans. A 36, 2191 (2005)

    Article  Google Scholar 

  16. I. Mejía, A. Boulaajaj, J. Calvo, J.M. Cabrera, Mater. Sci. Eng. A 611, 77 (2014)

    Article  Google Scholar 

  17. A.S. Hamada, L.P. Karjalainen, Mater. Sci. Eng. A 528, 1819 (2011)

    Article  Google Scholar 

  18. M. Kang, J.W. Won, K.R. Lim, H.-J. Kwon, S.M. Seo, Y.S. Na, Metals 8, 54 (2018)

    Article  Google Scholar 

  19. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112, 40 (2016)

    Article  CAS  Google Scholar 

  20. B. Schuh, F. Mendez-Martin, B. Volker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 258 (2015)

    Article  CAS  Google Scholar 

  21. P. Rocabois, J. Lehmann, H. Gaye, M. Wintz, J. Cryst. Growth 199, 838 (1999)

    Article  Google Scholar 

  22. I.H. Jung, Solid State Ion. 177, 765 (2006)

    Article  CAS  Google Scholar 

  23. S.W. Song, Y.J. Kwon, T. Lee, C.S. Lee, Mater. Sci. Eng. A 677, 421 (2016)

    Article  CAS  Google Scholar 

  24. Z.X. Gui, W. Kai, Y.S. Zhang, Z. Bin, Appl. Surf. Sci. 316, 595 (2014)

    Article  CAS  Google Scholar 

  25. M. Hasegawa, in Treatise on Process Metallurgy, 1st edn., ed. by S. Seetharaman (Elsevier, Amsterdam, 2013), p. 508

    Google Scholar 

  26. C.H. Park, C.S. Oh, S. Kim, Mater. Sci. Eng. A 542, 127 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from Fundamental Research Program (PNK5610) of the Korean Institute of Materials Science (KIMS), and from the Future Material Discovery Project of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea (NRF-2016M3D1A1023534).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Woo Won or Young Sang Na.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, J.W., Kang, M., Kwon, HJ. et al. Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling. Met. Mater. Int. 24, 1432–1437 (2018). https://doi.org/10.1007/s12540-018-0129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0129-0

Keywords

Navigation