Skip to main content
Log in

Effect of target-fixture geometry on shock-wave compacted copper powders

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  2. Y. Song, M. Chen, B. Xu, D. Gao, J. Guo, H. S. Kim, et al. Korean J. Met. Mater. 51, 831 (2016).

    Google Scholar 

  3. Y. Song, M. Chen, W. Wang, B. Xu, D. Gao, H. S. Kim, et al. Korean J. Met. Mater. 55, 710 (2017).

    Google Scholar 

  4. G. W. Nieman, J. R. Weertman, and R.W. Siegel, Scripta. Metall. Mater. 23, 2013 (1989).

    Article  Google Scholar 

  5. A. M. El-Sherik and U. Erb, J. Mater. Sci. 30, 5743 (1995).

    Article  Google Scholar 

  6. L. G. Austin, R. R. Klimpel, and P. T. Luckie, Process Engineering of Size Reduction: Ball Milling, AIME, SME, New York, USA (1984).

    Google Scholar 

  7. Z. A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  8. D. E. Eakins and N. N. Thadhani, Appl. Phys. Lett. 92, 111903 (2008).

    Article  Google Scholar 

  9. T. Akashi and A. B. Sawaoka, J. Mater. Sci. 22, 3276 (1987).

    Article  Google Scholar 

  10. M. A. Meyers, D. J. Benson, and E. A. Olevsky, Acta Mater. 47, 2089 (1999).

    Article  Google Scholar 

  11. W. H. Gourdin, Prog. Mater. Sci. 30, 39 (1986).

    Article  Google Scholar 

  12. Z. Zhao, X.-J. Li, H.-H. Yan, and D.-H. Liu, Combust. Explos. Shock Waves 44, 119 (2008).

    Article  Google Scholar 

  13. G. A. Emelchenko, I. G. Naumenko, V. A. Veretennikov, and Y. A. Gordopolov, Mat. Sci. Eng. A 503, 55 (2009).

    Article  Google Scholar 

  14. C. Dai and N. N. Thadhani, Acta Mater. 59, 785 (2011).

    Article  Google Scholar 

  15. P. Molian, R. Molian, and R. Nair, Appl. Surf. Sci. 255, 3859 (2009).

    Article  Google Scholar 

  16. L. Davison, D. M. Webb, and R. A. Graham, Shock Waves Condens. Matter-1981 (eds. W. J. Nellis, L. Seaman, and R. A. Graham), pp.67–71, American Institute of Physics, New York, USA (1982).

  17. R. A. Graham and D. M. Webb, Shock Waves Condens. Matter (eds. J. R. Asay, R. A. Graham, and J. K. Straub), pp.211–214, North Holland, Amsterdam, Netherlands (1984).

  18. R. A. Graham and D. M. Webb, Shock Waves Condens. Matter (eds. Y. M. Gupta), pp.831–836, Springer US, Boston, USA (1986).

  19. A. B. Sawaoka, Shock Waves in Materials Science, Springer Science & Business Media, pp.5–7, Germany (2012).

    Google Scholar 

  20. N. N. Thadhani, Ptrog. Mater. Sci. 37, 117 (1993).

    Article  Google Scholar 

  21. D.-H. Ahn, W. Kim, M. Kang, L. J. Park, S. Lee, and H. S. Kim, Mat. Sci. Eng. A 625, 230 (2015).

    Article  Google Scholar 

  22. W. Kim, D.-H. Ahn, L. J. Park, and H. S. Kim, Procedia Eng. 81, 1180 (2014).

    Article  Google Scholar 

  23. Y. Seong, Y. Kim, I. D. Jung, S. Kim, S. J. Kim, S. J. Park, et al. Korean J. Met. Mater. 55, 760 (2017).

    Article  Google Scholar 

  24. J. R. Brown, P. J. C. Chappell, G. T. Egglestone, and E. P. Gellert, J. Phys. E 22, 771 (1989).

    Article  Google Scholar 

  25. C. Poizat, L. Campagne, L. Daridon, S. Ahzi, C. Husson, and L. Merle, Int. J. Form. Process. 8, 29 (2005).

    Article  Google Scholar 

  26. G. R. Johnson and W. H. Cook, Eng. Fract. Mech. 21, 31 (1985).

    Article  Google Scholar 

  27. K. Kim, S. Kuroda, and M. Watanabe, J. Therm. Spray Technol. 19, 1244 (2010).

    Article  Google Scholar 

  28. M. A. Meyers, Dynamic Behavior of Materials, p.133, John wiley & sons, New York, USA (1994).

    Book  Google Scholar 

  29. W. Herrmann, J. Appl. Phys. 40, 2490 (1969).

    Article  Google Scholar 

  30. D.-H. Ahn, W. Kim, E. Y. Yoon, and H. S. Kim, J. Mater. Sci. 51, 82 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Ahn, DH., Yoon, J.I. et al. Effect of target-fixture geometry on shock-wave compacted copper powders. Met. Mater. Int. 24, 84–94 (2018). https://doi.org/10.1007/s12540-017-7344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7344-y

Keywords

Navigation