Skip to main content
Log in

Kinetics model of bainitic transformation with stress

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Caballero and H. K. D. H. Bhadeshia, Curr. Opin. Solid St. M. 8, 251 (2004).

    Article  Google Scholar 

  2. C. Garcia-Mateo and F. G. Caballero, Mater. Trans. 46, 1839 (2005).

    Article  Google Scholar 

  3. C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, ISIJ Int. 43, 1238 (2003).

    Article  Google Scholar 

  4. F. G. Caballero, M. J. Santofimia, C. Garcia-Mateo, J. Chao, and C. de Garcia Andres, Mater. Design 30, 2077 (2009).

    Article  Google Scholar 

  5. S. K. Putatunda, A. V. Singar, R. Tackett, and G. Lawes, Mat. Sci. Eng. A 513-514, 329 (2009).

    Article  Google Scholar 

  6. X. X. Zhang, G. Xu, X. Wang, D. Embury, O. Bouaziz, H. S. Zurob, et al. Metall. Mater. Trans. A 45, 1352 (2014).

    Article  Google Scholar 

  7. H. K. D. H. Bhadeshia, S. A. David, J. M. Vitek, and R. W. Reed, Mater. Sci. Tech. 7, 686 (1991).

    Article  Google Scholar 

  8. P. H. Shipway and H. K. D. H. Bhadeshia, Mat. Sci. Eng. A 201, 143 (1995).

    Article  Google Scholar 

  9. K. Hase, C. Garcia-Mateo, and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 20, 1499 (2004).

    Article  Google Scholar 

  10. S. Kundu, K. Hase, and H. K. D. H. Bhadeshia, Proc. R. Soc. A 463, 2309 (2007).

    Article  Google Scholar 

  11. L. Tian, Q. Ao, and S. L. Li, J. Mater. Res. 29, 2994 (2014).

    Article  Google Scholar 

  12. M. X. Zhou, G. Xu, L. Wang, Z. L. Xue, and H. J. Hu, Met. Mater. Int. 21 985 (2015).

    Article  Google Scholar 

  13. M. X. Zhou, G. Xu, Y. L. Zhang, and Z. L. Xue, Int. J. Mater. Res. 106, 1040 (2015).

    Article  Google Scholar 

  14. M. X. Zhou, G. Xu, L. Wang, and H. J. Hu, Met. Mater. Int. Fig. 8. The relationship between transformation time t needed to finish bainitic transformation and kinetics parameter b. 22, 956 (2016).

    Google Scholar 

  15. M. X. Zhou, G. Xu, L. Wang, and Q. Yuan, Metals 6, 119 (2016).

    Article  Google Scholar 

  16. C. C. Liu, D. Y. Ju, K. F. Yao, Z. Liu, and X. J. Xu, Mater. Sci. Tech. 17, 1229 (2001).

    Article  Google Scholar 

  17. M. C. Uslu, D. Canadinc, H.-G. Lambers, S. Tschumak, and H. J. Maier, Model. Simul. Mater. Sc. 19, 45007 (2011).

    Article  Google Scholar 

  18. M. X. Zhou, G. Xu, H. J. Hu, Q. Yuan, and J. Y. Tian, Steel Res. Int. 88 DOI: 10.1002/srin.201600377 (2017).

  19. H. K. D. H. Bhadeshia, Bainite in Steels, 2nd ed., pp.201–221, The Institute of Materials, London, UK (2001).

    Google Scholar 

  20. W. Gong, Y. Tomota, Y. Adachi, A. M. Paradowska, J. F. Kelleher, and S. Y. Zhang, Acta Mater. 61, 4142 (2013).

    Article  Google Scholar 

  21. H. J. Hu, H. S. Zurob, G. Xu, D. Embury, and G. R. Purdy, Mat. Sci. Eng. A 626, 34 (2015).

    Article  Google Scholar 

  22. J. G. He, A. M. Zhao, C. Zhi, and H. L. Fan, Scripta Mater. 107, 71 (2015).

    Article  Google Scholar 

  23. M. Avrami, J. Chem. Phys. 9, 177 (1941).

    Article  Google Scholar 

  24. G. I. Rees and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 8, 985 (1992).

    Article  Google Scholar 

  25. G. I. Rees and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 8, 994 (1992).

    Article  Google Scholar 

  26. N. V. Luzginova, L. Zhao, and J. Sietsma, Mat. Sci. Eng. A 481-482, 766 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Xu, G., Hu, H. et al. Kinetics model of bainitic transformation with stress. Met. Mater. Int. 24, 28–34 (2018). https://doi.org/10.1007/s12540-017-7261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7261-0

Keywords

Navigation