Skip to main content
Log in

Effect of Si addition on secondary hardening of alloy steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, the precipitation kinetics of secondary carbides in Si-bearing steels was examined via calorimetric analysis coupled with the Johnson-Mehl-Avrami kinetic model. In particular, the properties of two commercial high-speed steels (10V and ASP 23), which contained the secondary carbides described by the formulas MC/M23C6 and MC/M23C6/M6C, respectively, were investigated and compared with those of PSD and AISI D2 steels. The obtained results revealed that the presence of Si in alloys not only inhibited the precipitation of the cementite phase, but also accelerated the precipitation kinetics of the secondary carbides. Using the obtained magnitudes of the thermodynamic driving force for complete precipitation in the metastable systems formed under para-equilibrium and ortho-equilibrium conditions, it was found that the addition of Si decreased the stability of the system produced under para-equilibrium conditions and, therefore, enabled the diffusion of interstitial carbon species at low temperatures as well as rapid aging during the secondary hardening reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Zander, Powder Metall. Int. 2, 129 (1970).

    Google Scholar 

  2. H. F. Fischmeister, Ann. Rev. Mater. Sci. 5, 151 (1975).

    Article  Google Scholar 

  3. A. Kasak and E. J. Dulis, Powder Metall. 21, 114 (1978).

    Article  Google Scholar 

  4. L. J. Xu, S. Z. Wei, J. D. Xing, Y. Li, and R. Long, Met. Mater. Int. 12, 371 (2006).

    Article  Google Scholar 

  5. J. M. Byun, S. R. Bang, C. W. Park, M. J. Suk, and Y. D. Kim, Met. Mater. Int. 22, 81 (2016).

    Article  Google Scholar 

  6. F. D. Richardson, J. Iron Steel I. 33, 33 (1953).

    Google Scholar 

  7. K. Kuo, J. Iron Steel I. 174, 223 (1953).

    Google Scholar 

  8. K. Stiller, L.-E. Svensson, P. R. Howell, W. Rong, H.-O. Andren, and G. L. Dunlop, Acta Metall. 32, 1457 (1984).

    Article  Google Scholar 

  9. H. F. Fischmeister, S. Karagoz, H.-O. Andren, Acta Metall. 36, 817 (1987).

    Article  Google Scholar 

  10. S. Karagoz, H. F. Fischmeister, H.-O. Andren, and C. Guang-Jun, Metall. Mater. Trans. A 23, 1631 (1992).

    Article  Google Scholar 

  11. W. Rong, H.-O. Andren, H. Wisell, and G. L. Dunlop, Acta Metall. 40, 1727 (1992).

    Article  Google Scholar 

  12. D. Raynor, J. A. whiteman, and R. W. K. Honeycombe, J. Iron Steel I. 204, 349 (1966).

    Google Scholar 

  13. H. K. Moon, H. R. Yang, K. S. Cho, K. B. Lee, and H. Kwon, Korean. J. Met. Mater. 46, 477 (2008).

    Google Scholar 

  14. H. K. Moon, K. B. Lee, and H. Kwon, Mat. Sci. Eng. A 474, 328 (2008).

    Article  Google Scholar 

  15. D. H. Kim, Y. H. Lee, and J. H. Kim, Korean J. Met. Mater. 54, 716 (2016).

    Article  Google Scholar 

  16. J. M. Song, M. C. Kim, S. M. Hong, and B. S. Lee, Korean J. Met. Mater. 53, 700 (2015).

    Article  Google Scholar 

  17. H. R. Yang, K. B. Lee, and H. Kwon, Mat. Sci. Eng. A 265, 179 (1999).

    Article  Google Scholar 

  18. H. Kwon, J. Lee, K. Lee, C. Kim, and H. Yang, Metall. Mater. Trans. A 28, 621 (1997).

    Article  Google Scholar 

  19. D. Delagnes, P. Lamesle, M. H. Mathon, N. Mebarki, and C. Levaillant, Mat. Sci. Eng. A 394, 435 (2005).

    Article  Google Scholar 

  20. K. S. Cho, S. S. Park, H. K, Kim, Y. B. Song, and H. Kwon, Metall. Mater. Trans. A 46, 1535 (2015).

    Article  Google Scholar 

  21. E. J. Mittemeijer, L. Cheng, P. Van der Schaaf, C. Brakman, and B. Korevaar, Metall. Mater. Trans. A 19, 925 (1988).

    Article  Google Scholar 

  22. E. J. Mittemeijer, J. Meter. Sci. 27, 3977 (1992).

    Article  Google Scholar 

  23. J. Cermak, J. Ruzickova, and A. Pokorna, Scripta Mater. 33, 1069 (1995).

    Article  Google Scholar 

  24. H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, et al. Acta Mater. 50, 4117 (2002).

    Article  Google Scholar 

  25. S. Takemoto, H. Nitta, Y. Iijima, and Y. Yamazaki, Philos. Mag. 67, 1619 (2007).

    Article  Google Scholar 

  26. P. Morra, A. Bottger, and E. Mittemeijer, J. Therm. Anal. Calorim. 64, 905 (2001).

    Article  Google Scholar 

  27. K. S. Cho, S. S. Park, D. H. Choi, and H. Kwon, J. Alloy. Compd. 25, 314 (2015).

    Article  Google Scholar 

  28. E. Kozeschnik and H. Bhadeshia, Mater. Sci. Tech. 24, 343 (2008).

    Article  Google Scholar 

  29. H. I. Aaronson, Lectures on the Theory of Phase Transformations, pp. 16–18, Metallurgical Society of AIME, USA (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, K.S., Kwon, H. Effect of Si addition on secondary hardening of alloy steels. Met. Mater. Int. 23, 632–638 (2017). https://doi.org/10.1007/s12540-017-7162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7162-2

Keywords

Navigation