Skip to main content
Log in

Microstructure evolution and modeling of 2024 aluminum alloy sheets during hot deformation under different stress states

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, specimens of the 2024 aluminum alloy sheet were compressed and stretched along the original rolling direction at elevated temperatures. The microstructure evolution was investigated by characterizing the metallographic structures via electron backscattered diffraction technology before and after deformation. It was found that while recrystallization occurred in the compressed specimens, it was not observed to the same extent in the stretched specimens. This difference in the grain morphology has been attributed to the different movement behaviors of the grain boundaries, i.e., their significant migration in the compression deformation and the transformation from low-angle to high-angle boundaries observed mainly during tension deformation. The empirical model, which can describe the grain size evolution during compression, is not suitable in the case of tension, and therefore, a new model which ignores the detailed recrystallization process has been proposed. This model provides a description of the grain size change during hot deformation and can be used to predict the grain size in the plastic deformation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dursun and C. Soutis, Mater. Design 56, 862 (2014).

    Article  Google Scholar 

  2. Z. L. Hu, S. J. Yuan, and X. S. Wang, Mater. Design 32, 5055 (2011).

    Article  Google Scholar 

  3. X. Feaugas and H. Haddou, Philos. Mag. 87, 989 (2007).

    Article  Google Scholar 

  4. L. Deng, T. Zhao, J. S. Jin, and X. Y. Wang, Procedia Engineer 81, 1049 (2014).

    Article  Google Scholar 

  5. J. D. Seidt and A. Gilat, Int. J. Solids Struct. 50, 1781 (2013).

    Article  Google Scholar 

  6. L. Wang, M. Strangwood, D. Blint, J. Lin, and T. A. Dean, Mat. Sci. Eng. A 528, 2648 (2011).

    Article  Google Scholar 

  7. M. Weiss, B. Rolfe, P. D. Hodgson, and C. H. Yang, J. Mater. Process. Tech. 212, 877 (2011).

    Article  Google Scholar 

  8. H. E. Hu, L. Zhen, L. Yang, W. Z. Zhao, and B. Y. Zhang, Mat. Sci. Eng. A 488, 64 (2008).

    Article  Google Scholar 

  9. H. E. Hu, L. Zhen, B. Y. Zhang, L. Yang, and J. Z. Chen, Mater. Charact. 59, 1185 (2008).

    Article  Google Scholar 

  10. X. J. Duan and T. Sheppard, Mat. Sci. Eng. A 351, 282 (2003).

    Article  Google Scholar 

  11. D. P. Field, P. B. Trivedia, S. I. Wright, and M. Kumar, Ultramicroscopy 103, 33 (2005).

    Article  Google Scholar 

  12. E. Demir, D. Raabe, N. Zaafarani, and S. Zaefferer, Acta Mater. 57, 559 (2009).

    Article  Google Scholar 

  13. K. Graetz, C. Miessen, and G. Gottstein, Acta Mater. 67, 58 (2014).

    Article  Google Scholar 

  14. P. J. Hurley, P. S. Bate, and F. J. Humphreys, Acta Mater. 51, 4737 (2003).

    Article  Google Scholar 

  15. W. Blum, Q. Zhu, R. Merkel, and H. J. McQueen, Mat. Sci. Eng. A 205, 23 (1996).

    Article  Google Scholar 

  16. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, Prog. Mater. Sci. 60, 130 (2014).

    Article  Google Scholar 

  17. B. Shen, L. Deng, and X. Y. Wang, Mat. Sci. Eng. A 625, 288 (2015).

    Article  Google Scholar 

  18. R. Manna, J. Sarkar, and M. K. Surappa, J. Mater. Sci. 31, 1625 (1996).

    Article  Google Scholar 

  19. W. C. Liu, D. J. Jensen, and J. G. Morris, Acta Mater. 49, 3347 (2001).

    Article  Google Scholar 

  20. D. L. Yin, K. F. Zhang, G. F. Wang, and W. B. Han, Mat. Sci. Eng. A 392, 320 (2005).

    Article  Google Scholar 

  21. Y. Xun and M. J. Tan, Mater. Charact. 52, 187 (2004).

    Article  Google Scholar 

  22. A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Mat. Sci. Eng. A 615, 497 (2014).

    Article  Google Scholar 

  23. J. Lin and T. A. Dean, J. Mater. Process. Tech. 167, 354 (2005).

    Article  Google Scholar 

  24. C. M. Sellar, Mater. Sci. Tech. 1, 325 (1985).

    Article  Google Scholar 

  25. F. Yin, L. Hua, H. J. Mao, X. H. Han, D. S. Qian, and R. Zhang, Mater. Design 55, 560 (2014).

    Article  Google Scholar 

  26. J. J. Jonas, X. Quelennec, L. Jiang, and E. Martin, Acta Mater. 57, 2748 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Zhou, P., Wang, X. et al. Microstructure evolution and modeling of 2024 aluminum alloy sheets during hot deformation under different stress states. Met. Mater. Int. 24, 112–120 (2018). https://doi.org/10.1007/s12540-017-7132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7132-8

Keywords

Navigation