Skip to main content
Log in

SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste

  • Research Paper
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Károly, I. Mohai, S. Klébert, A. Keszler, I. Sajó, and J. Szépvölgyi, Powder. Technol. 214, 300 (2011).

    Article  Google Scholar 

  2. H. Zhang, W. Ding, K. He, and M. Li, Nanoscale. Res. Lett. 5, 1264 (2010).

    Article  Google Scholar 

  3. S. Bhaumik, C. Divakar, S. Devi, and A. Singh, J. Mater. Res. 14, 906 (1999).

    Article  Google Scholar 

  4. S. Niyomwas, JMMM. 19, 21 (2009).

    Google Scholar 

  5. Y. Yang, Z. Lin, and J. Li, J. Eur. Ceram. Soc. 29, 175 (2009).

    Article  Google Scholar 

  6. R. Mahmoodian, R. Yahya, A. Dabbagh, M. Hamdi, and M. Hassan, PLoS. One. 10, 1 (2015).

    Google Scholar 

  7. T. Chanadee and S. Niyomwas, Key. Eng. Mat. 675-676, 623 (2016).

    Article  Google Scholar 

  8. L. Zhang, X. Wang, and J. Yang, Appl. Mech. Mater. 152-154, 589 (2012).

    Article  Google Scholar 

  9. Y. Yin, B. Ma, S. Li, B. Zhang, J. Yu, Z. Zhang, et al. Ceram. Int. 42, 19225 (2016).

    Article  Google Scholar 

  10. A. Dey and K. Pandey, Rev. Adv. Mater. Sci. 44, 168 (2016).

    Google Scholar 

  11. Sulardjaka, Jamasri, M. W. Wilda, and Kusnanto, B. Mater. Sci. 34, 1013 (2011).

    Article  Google Scholar 

  12. H. Cui, Y. Zheng, J. Ma, S. Yang, G. Tian, X. Liu, et al. J. Wood. Sci. 63, 95 (2017).

    Article  Google Scholar 

  13. Y. Chiew and K. Cheong, Mater. Sci. Eng. B 176, 951 (2011).

    Article  Google Scholar 

  14. V. Karelin, A. Strashko, A. Sazonov, and A. Dubrovin, Resource-Efficient Technologies 2, 50 (2016).

    Article  Google Scholar 

  15. C. Srinivasakannan and M. Bakar, Biomass Bioenerg 27, 89 (2004).

    Article  Google Scholar 

  16. C. Bouchelta, M. Medjram, O. Bertrand, and J. Bellat, J. Anal. Appl. Pyrol. 82, 70 (2008).

    Article  Google Scholar 

  17. G. Couto, A. Dessimoni, M. Bianchi, D. Perígolo, and P. Trugilho, Ciênc. Agrotec. 36, 69 (2012).

    Article  Google Scholar 

  18. S. Niyomwas, Properties and Applications of Silicon (ed. R. Gerhardt), p. 411, InTech, Croatia (2011).

    Google Scholar 

  19. M. Dehghanzadeh, A. Ataie, and S. Manesh, Int. J. Mod. Phys. 5, 263 (2012).

    Google Scholar 

  20. R. Andrievski, Rev. Adv. Mater. Sci. 22, 1 (2009).

    Google Scholar 

  21. J. Moore and H. Feng, Prog. Mater. Sci. 39, 243 (1995).

    Article  Google Scholar 

  22. U. Schubert and N. Hüsing, Synthesis of Inorganic Materials, pp. 22–26, WileyVCH, Weinheim, Germany (2012).

    Google Scholar 

  23. L. Zeatoun and P. Morrison, J. Mater. Res. 12, 1237 (1997).

    Article  Google Scholar 

  24. L. Ibrahim, Water. Sci. 29, 109 (2015).

    Article  Google Scholar 

  25. L. Cui, Y. Guo, X. Wang, Z. Du, and F. Cheng, Chiness. J. Chem. Eng. 23, 590 (2015).

    Article  Google Scholar 

  26. B. Kutchko and A. Kim, Fuel 85, 2537 (2006).

    Article  Google Scholar 

  27. C. Lu, S. Xu, and C. Liu, J. Anal. Appl. Pyrol. 87, 282 (2010).

    Article  Google Scholar 

  28. J. Zhang, Z. Zhong, J. Zhao, M. Yang, W. Li, and H. Zhang, Can. J. Chem. Eng. 90, 762 (2012).

    Article  Google Scholar 

  29. Y. Chen, B. Huang, M. Huang, and B. Cai, J. Taiwan. Inst. Chem. E. 42, 837 (2011).

    Article  Google Scholar 

  30. X. Jin, Z. Yu, and Y. Wu, Cell. Chem. Technol. 46, 79 (2012).

    Google Scholar 

  31. W. Ghani, A. Mohd, G. Silva, R. Bachmann, Y. Taufiq-Yap, U. Rashid, and A. Muhtaseb, Ind. Crops. Prod. 44, 18 (2013).

    Article  Google Scholar 

  32. L. Sadler and M. Shamsuzzoha, J. Mater. Res. 22, 147 (1997).

    Article  Google Scholar 

  33. A. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, pp. 94–96, Springer Science & Business Media, London, UK (2012).

    Google Scholar 

  34. A. Mukasyan, Properties and Applications of Silicon (ed. R. Gerhardt), p. 389, InTech, Croatia (2011).

    Google Scholar 

  35. S. Gadakary, M. Davidson, R. Veerababu, and A. Khanra, J. Min. Metall. Sect. B-Metall. 52, 69 (2016).

    Article  Google Scholar 

  36. J. Ramos, J. Hernández, A. Cambeses, J. Scarrow, and A. Galindo, An Introduction to the Study of Mineralogy (ed. C. Aydinalp), p. 73, InTech, Croatia (2012).

    Google Scholar 

  37. Z. Yermekova, Z. Mansurov and A. Mukasyan, Int. J. Self-Propag. High-Temp. Synth. 19, 96 (2010).

    Article  Google Scholar 

  38. A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, and M. Valer, Chem. Soc. Rev. 43, 8049 (2014).

    Article  Google Scholar 

  39. W. Yin, Y. Wang, Q. Ji. Yao, Y. Hou, L. Wang, and W. Zhong, Int. J. Miner. Metall. Mater. 21, 304 (2014).

    Article  Google Scholar 

  40. Z. Li, T. Shi, and D. Tan, J. Serb. Chem. Soc. 78, 1213 (2013).

    Article  Google Scholar 

  41. S. Ko, C. Won, and I. Shon, Scripta Mater. 37, 889 (1997).

    Article  Google Scholar 

  42. H. Jin, J. Li, M. Cao, and S. Agathopoulos, Powder Technol. 196, 229 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawat Chanadee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanadee, T. SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste. Met. Mater. Int. 23, 1188–1196 (2017). https://doi.org/10.1007/s12540-017-7111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7111-0

Keywords

Navigation