Skip to main content
Log in

Effect of nanoscale powders and microwave sintering on densification of alumina ceramics

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nanoscale alumina (Al2O3) powders with an average size of 100, 200, or 300 nm were sintered to investigate the effects of the initial powder size on the densification behavior under the application of microwaves (2.45 GHz, 2 kW). The sintering was performed using microwave-assisted sintering (MWS) and conventional sintering (CS) methods in the temperature range of 1100–1600 °C for 0–180 min. The Al2O3 samples prepared with the 100-nm-sized powders using MWS exhibited a relative density (RD) of over 90% when sintered at 1200 °C for 10 min; the same RD was achieved at 1500 °C when the sintering was performed for the same time using CS. However, a sintering temperature difference of ~100 °C for a RD of ~90% was observed between the MWS and CS methods for the 300-nm-sized powders. Nano-grained (~290 nm) Al2O3 ceramics with a high density of ≥90% were obtained from nanoscale powders (~100 nm) using MWS methods. The response of the nanoscale powders to microwaves was more significant as the initial powder size decreased from 300 to 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Brosnan, G. L. Messing, and D. K. Agrawal, J. Am. Ceram. Soc. 86, 1307 (2003).

    Article  Google Scholar 

  2. K. Maca, V. Pouchly, and Z. Shen, Integr. Ferroelectr. 99, 114 (2008).

    Article  Google Scholar 

  3. X.-H. Wang, X.-Y. Deng, H.-L. Bai, H. Zhou, W.-G. Qu, and L.-T. Li, J. Am. Ceram. Soc. 89, 438 (2006).

    Article  Google Scholar 

  4. X.-H. Wang, P.-L. Chen, and I.-W. Chen, J. Am. Ceram. Soc. 89, 431 (2006).

    Article  Google Scholar 

  5. R. Viter, A. Katoch, and S. S. Kim, Met. Mater. Int. 20, 163 (2014).

    Article  Google Scholar 

  6. I.-J. Shon, H.-S. Kang, J.-M. Doh, and J.-K. Yoon, Met. Mater. Int. 21, 345 (2015).

    Article  Google Scholar 

  7. G. Cao, Nanostructures and Nanomaterials, p. 1, Imperial College Press, London (2004).

    Book  Google Scholar 

  8. D. F. Stein, Microwave Processing of Materials. Committee on Microwave Processing of Materials, National Academies Press, Washington D. C. (1994).

    Google Scholar 

  9. D. E. Clark and W. H. Sutton, Annu. Rev. Mater. Sci. 26, 299 (1996) (Updated in Ceramic Transaction Vol. 80) 61 (1997).

    Article  Google Scholar 

  10. E. T. Thostenson and T. W. Chou, Compos. Part A 30, 1055 (1999).

    Article  Google Scholar 

  11. J. D. Katz, Annu. Rev. Mater. Sci. 22, 153 (1992).

    Article  Google Scholar 

  12. J. H. Booske, R. F. Cooper, and S. A. Freeman, Mat. Res. Innovat. 1, 77 (1997).

    Article  Google Scholar 

  13. J. M. Osepchuk, IEEE Trans. MTT-32, 1200 (1984).

  14. F. Zuo, C. Carry, S. Saunier, S. Marinel, and D. Goeuriot, J. Am. Ceram. Soc. 96, 1732 (2013).

    Article  Google Scholar 

  15. K. Kim, E. Kim, Y. Kim, K. Park, Korean J. Met. Mater. 52, 155 (2014).

    Article  Google Scholar 

  16. J.-B. Ahn, D. S. Kim, S.-Y. Yoon, and C. J. Choi, Korean J. Met. Mater. 54, 275 (2016).

    Article  Google Scholar 

  17. M._A. Janney, H. D. Kimrey, M. A. Schmidt, and J. O. Kiggans, J. Am. Ceram. Soc. 74, 1675 (1991).

    Article  Google Scholar 

  18. M. A. Janney and H. D. Kimrey, Mater. Res. Soc. Proc. 189, 215 (1991).

    Article  Google Scholar 

  19. Y. Fang, J. Cheng, and D. K. Agrawal, Mater. Lett. 58, 498 (2004).

    Article  Google Scholar 

  20. M. Mizuno, S. Obata, S. Takayama, S. Ito, N. Kato, T. Hirai, and M. Sato, J. Eur. Ceram. Soc. 24, 387 (2004).

    Article  Google Scholar 

  21. J. Cheng, D. Agrawal, Y. Zhang, and R. Roy, Mater. Lett. 56, 587 (2002).

    Article  Google Scholar 

  22. C. J. Reidy, T. J. Fleming, S. Hampshire, and M. R. Towler, Int. J. Appl. Ceram. Technol. 8, 1475 (2011).

    Article  Google Scholar 

  23. M. J. Bannister and J. Woolfrey, J. Am. Ceram. Soc. 53, 114 (1970).

    Article  Google Scholar 

  24. L. C. D. Jonghe and M. N. Rahaman, 4.1 Sintering of Ceramics, Handbook of Advanced Ceramics, p. 187, Academic Press, Oxford (2003).

    Google Scholar 

  25. R. Griffiths and C. Radford, Calculations in Ceramics, Maclaren and Sons Ltd., p. 28–42, London (1965).

    Google Scholar 

  26. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction, Springer, p. 325, Berlin (2003).

    Google Scholar 

  27. K. I. Rybakov, V. E. Semenov, S. A. Freeman, J. H. Booske, and R. F. Cooper, Phys. Rev. B 55, 3559 (1997).

    Article  Google Scholar 

  28. K. I. Rybakov and V. E. Semenov, Phys. Rev. B 49, 64 (1994).

    Article  Google Scholar 

  29. J. H. Booske, R. F. Cooper, S. A. Freeman, K. I. Rybakov, and V. E. Semenov, Phys. Plasmas 5, 1664 (1998).

    Article  Google Scholar 

  30. J. Woolfrey, J. Am. Ceram. Soc. 55, 383 (1972).

    Article  Google Scholar 

  31. M. J. Bannister, J. Am. Ceram. Soc. 51, 548 (1968).

    Article  Google Scholar 

  32. M. N. Rahaman, Ceramic Processing and Sintering, pp. 679–752, Marcel Dekker, Inc., New York (1995).

    Google Scholar 

  33. A. Birnboim, J. P. Calame, and Y. Carmel, J. Appl. Phys. 85, 478 (1999).

    Article  Google Scholar 

  34. H. S. Yun, H. H. Kim, D. Y. Jeong, and N. H. Cho, J. Am. Ceram. Soc. 98, 1087 (2015).

    Article  Google Scholar 

  35. W. Q. Shao, S. O. Chen, D. Li, H. S. Cao, Y. C. Zhang, and S. S. Zhang, Bull. Mater. Sci. 31, 903 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hee Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, HS., Kim, JC., Jeong, DY. et al. Effect of nanoscale powders and microwave sintering on densification of alumina ceramics. Met. Mater. Int. 22, 1108–1115 (2016). https://doi.org/10.1007/s12540-016-6300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6300-6

Keywords

Navigation