Skip to main content
Log in

Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Precipitation of V carbides is known to suppress the hydrogen-embrittlement (HE) phenomenon as well as to increase material strength. Despite increasing attention to V carbides, there have been few systematic and quantitative investigations on their effects on HE resistance. This study reveals the role of V carbides on the HE behavior of tempered martensitic steel while eliminating other factors, such as chemical composition of other elements, mechanical strength, and dislocation density. The amount of trapped hydrogen increased with increasing V content, whereas the best HE resistance was attained at 0.2 wt% V and it decreased with further V addition. V carbide was considered as a non-diffusible hydrogen-trapping site in this study. However, excessive V content led to the formation of large undissolved carbides that gave rise to brittle fracture and decreased HE resistance. This study suggests that improved HE resistance can be achieved by minimizing the size and amount of undissolved V carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Krauss, Mater. Sci. Eng. A 273-275, 40 (1999).

    Article  Google Scholar 

  2. W.-G. Cha and N. S. Kim, Met. Mater. Int. 20, 841 (2014).

    Article  Google Scholar 

  3. C.-H. Lee, M.-G. Park, J. O. Moon, T.-H. Lee, N. H. Kang, and H. C. Kim, Korean J. Met. Mater. 53, 312 (2015).

    Article  Google Scholar 

  4. Y. S. Chun, J. Lee, C. M. Bae, K.-T. Park, and C. S. Lee, Scripta Mater. 67, 681 (2012).

    Article  Google Scholar 

  5. G. Krauss, Comprehensive Materials Processing, 12, 363 (2014).

    Article  Google Scholar 

  6. J. S. Kim, Y. H. Lee, D. L. Lee, K.-T. Park, and C. S. Lee, Mater. Sci. Eng. A 505, 105 (2009).

    Article  Google Scholar 

  7. A. Nagao, M. L. Martin, M. Dadfarnia, P. Sofronis, and I. M. Robertson, Acta Mater. 74, 244 (2014).

    Article  Google Scholar 

  8. M. Gojic and L. Kosec, ISIJ Int. 37, 412 (1997).

    Article  Google Scholar 

  9. S. Li, E. Akiyama, K. Yuuji, K. Tsuzaki, N. Uno, and B. Zhang, Sci. Technol. Adv. Mat. 11, 025005 (2010).

    Article  Google Scholar 

  10. E. Akiyama, M. Wang, S. Li, Z. Zhang, Y. Kimura, N. Uno, and K. Tsuzaki, Metall. Mater. Trans. A 44, 1290 (2013).

    Article  Google Scholar 

  11. F. G. Wei and K. Tsuzaki, Metall. Mater. Trans. A 37A, 331 (2006).

    Article  Google Scholar 

  12. F. G. Wei, T. Hara, and K. Tsuzaki, Advanced Steels April, 87 (2011).

    Book  Google Scholar 

  13. F. G. Wei and K. Tsuzaki, Proceedings of the 2008 International Hydrogen Conference - Effects of Hydrogen on Materials, pp.456–463, International Institute for Carbon-Neutral Energy Research, United States (2008).

    Google Scholar 

  14. J. Lee, T. Lee, Y. J. Kwon, D.-J. Mun, J.-Y. Yoo, and C. S. Lee, Corros. Rev. 33, 433 (2015).

    Google Scholar 

  15. R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson, Scand. J. Metall. 28, 186 (1999).

    Google Scholar 

  16. H. Asahi, D. Hirakami, and S. Yamasaki, ISIJ Int. 43, 527 (2003).

    Article  Google Scholar 

  17. J. O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad 26, 273 (2002).

    Article  Google Scholar 

  18. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  19. H. H. Johnson and A. R. Troiano, Nature 179, 777 (1957).

    Article  Google Scholar 

  20. R. A. Oriani and P. H. Josephic, Acta Metall. Mater. 22, 1065 (1974).

    Article  Google Scholar 

  21. N. Keijiro, T. Hideo, and C. Xiaolie, Eng. Fract. Mech. 24, 513 (1986).

    Article  Google Scholar 

  22. J. Lufrano and P. Sofronis, Acta Mater. 46, 1519 (1998).

    Article  Google Scholar 

  23. W. W. Gerberich and Y. T. Chen, MTA 6, 271 (1975).

    Article  Google Scholar 

  24. P. Sofronis and R. M. McMeeking, J. Mech. Phys. Solids 37, 317 (1989).

    Article  Google Scholar 

  25. J. Toribio, J. Mater. Sci. 28, 2289 (1993).

    Article  Google Scholar 

  26. T. Oikawa, J. J. Zhang, M. Enomoto, and Y. Adachi, ISIJ Int. 53, 1245 (2013).

    Article  Google Scholar 

  27. L. Vanherpe, N. Moelans, B. Blanpain, and S. Vandewalle, Comp. Mater. Sci. 49, 340 (2010).

    Article  Google Scholar 

  28. Y. K. Kim, T. H. Cho, S. H. Jeong, W. T. Kim, and D. H. Kim, Met. Mater. Int. 21, 741 (2015).

    Article  Google Scholar 

  29. S. Morooka, Y. Tomota, and T. Kamiyama, ISIJ Int. 48, 525 (2008).

    Article  Google Scholar 

  30. S. Takebayashl, T. Kunieda, N. Yoshinaga, K. Ushioda, and S. Ogata, ISIJ Int. 50, 875 (2010).

    Article  Google Scholar 

  31. N. S. Lim, C. W. Bang, S. Das, H. W. Jin, R. Ayer, and C. G. Park, Met. Mater. Int. 18, 87 (2012).

    Article  Google Scholar 

  32. J. Takahashi, K. Kawakami, and T. Tarui, Scripta Mater. 67, 213 (2012).

    Article  Google Scholar 

  33. S. Yamasaki and H. K. D. H. Bhadeshia, Mater. Sci. Tech. Ser 19, 1335 (2003).

    Article  Google Scholar 

  34. E. C. Bain and H. W. Paxton, Alloying Elements in Steel, p. 187, American Society for Metals (1966).

    Google Scholar 

  35. Y. S. Chun, J. S. Kim, K.-T. Park, Y.-K. Lee and C. S. Lee, Mater. Sci. Eng. A 533, 87 (2012).

    Article  Google Scholar 

  36. J. Y. Lee and J.-L. Lee, Philos. Mag. A 56, 293 (1987).

    Article  Google Scholar 

  37. I. J. Park, K. H. Jeong, J. G. Jung, C. S. Lee, and Y. K. Lee, Int. J. Hydrogen Energ. 37, 9925 (2012).

    Article  Google Scholar 

  38. T. Tsuchida, T. Hara, and K. Tsuzaki, Tetsu To Hagane 88, 771 (2002).

    Google Scholar 

  39. R. G. Baker and J. Nutting, ISI Special Report 64, 1 (1959).

    Google Scholar 

  40. Z. F. Hu and Z. G. Yang, J. Mater. Eng. Perform. 12, 106 (2003).

    Article  Google Scholar 

  41. V. N. Lipatnikov, A. I. Gusev, P. Ettmayer and W. Lengauer, J. Phys-Condens. Mat. 11, 163 (1999).

    Article  Google Scholar 

  42. R. Kesri and M. Duran-Charre, Mater. Sci. Tech. Ser 4, 692 (1988).

    Article  Google Scholar 

  43. W. S. Williams, High Temp-High Press. 4, 627 (1972).

    Google Scholar 

  44. T. Epicier, D. Acevedo, and M. Perez, Philos. Mag. 88, 31 (2008).

    Article  Google Scholar 

  45. X. Chong, Y. Jiang, R. Zhou, and J. Feng, RSC Advances 4, 44959 (2014).

    Article  Google Scholar 

  46. K. Miura, R. Souda, T. Aizawa, C. Oshima, S. Otani, and Y. Ishizawa, J. Vac. Sci. Technol. A 7, 3013 (1989).

    Article  Google Scholar 

  47. K. Kawakami and T. Matsumiya, ISIJ Int. 52, 1693 (2012).

    Article  Google Scholar 

  48. G. M. Pressouyre, Metall. Trans. A 10A, 1571 (1979).

    Article  Google Scholar 

  49. I. J. Park, S. Y. Jo, M. Kang, S. M. Lee, and Y. K. Lee, Corros. Sci. 89, 38 (2014).

    Article  Google Scholar 

  50. H. Kawakami, K. Tamaki, J. Suzuki, K. Takahashi, Y. Imae, and S. Ogusu, Weld World 55, 78 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taekyung Lee or Chong Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, T., Kwon, Y.J. et al. Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel. Met. Mater. Int. 22, 364–372 (2016). https://doi.org/10.1007/s12540-016-5631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5631-7

Keywords

Navigation