Skip to main content
Log in

Effect of aging and oxidation on strain hardening behaviour of a nickel-free high nitrogen austenitic stainless steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Effect of aging and oxidation on strain hardening behaviour of a nickel-free high nitrogen austenitic stainless steel has been investigated using room temperature tensile tests and TEM. The alloy in both oxidised and unoxidised conditions exhibits a transition in flow behaviour that can be described best by the Ludwigson flow relationship as evident from the lowest values of the sum of residual squares, χ 2, of the fit. The transition in macroscopic flow behaviour with strain has been correlated to change in deformation mechanism from planar slip in the low strain regime (LSR) to deformation twinning and slip in the high strain regime (HSR) in solution treated (ST) condition of the alloy. However, the LSR of the alloy aged for longer times (>100 h) is characterized by the formation of dislocation tangles, while the HSR is marked by the formation of well-defined finer dislocation cell structure. This difference in deformation sub-structures in low and high strain regimes between ST and long term aged samples has been correlated to the change in stacking fault energy due to the precipitation of Cr2N and σ-phases. Further, the alloy in ST condition exhibits the highest strain hardening rate, which then progressively decreases with aging time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Holloman and L. D. Jafee, Trans AMIE 162, 223 (1945).

    Google Scholar 

  2. P. Ludwik, Elemente der Technologischen Mechanik, p. 32, Springer Verlag OHG, Berlin (1909).

    Book  Google Scholar 

  3. E. Voce, J. Inst. Met. 74, 537 (1948).

    Google Scholar 

  4. H. Swift, J. Mech. Phys. Solids 1, 1 (1952).

    Article  Google Scholar 

  5. D. C. Ludwigson, Metall. Trans. 2, 2825 (1971).

    Article  Google Scholar 

  6. J. R. Low and F. Garofalo, Proc. Soc. Exp. Stress Anal. 44, 16 (1947).

    Google Scholar 

  7. D. T. Llewellyn, Mater. Sci. Technol. 13, 389 (1997).

    Article  Google Scholar 

  8. I. Karaman, H. Sehitoglu, Y. I. Chumlyakov, and H. J. Maier, JOM 54, 31 (2002).

    Article  Google Scholar 

  9. A. Soussan, S. Degallaix, and T. Magnin, Mater. Sci. Eng. A 142, 169 (1991).

    Article  Google Scholar 

  10. P. Müllner, C. Solenthaler, P. Uggowitzer, and M. O. Speidel, Mater. Sci. Eng. A 164, 164 (1993).

    Article  Google Scholar 

  11. S. Asgari, E. El-Danaf, S. R. Kalidindi, and R. D. Doherty, Metall. Mater. Trans. A 28, 1781 (1997).

    Article  Google Scholar 

  12. D. V. V. Satyanarayana, G. Malakondaiah, and D. S. Sarma, Mater. Sci. Eng. A 452, 244 (2007).

    Article  Google Scholar 

  13. J. S. Chou and C. G. Chao, Scr. Metall. Mater. 26, 261 (1992).

    Article  Google Scholar 

  14. S. Mahajan and G. Y. Chin, Acta Metall. 21, 1353 (1973).

    Article  Google Scholar 

  15. V. G. Gavriljuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, pp. 169–188, Springer Science & Business Media (1999).

    Book  Google Scholar 

  16. J. Li, H. Liu, and P. Huang, J. Cent. South Univ. 19, 1189 (2012).

    Article  Google Scholar 

  17. Z. Jiang, Z. Zhang, H. Li, Z. Li, and M. Qi-Feng, Int. J. Miner. Metall. Mater. 17, 729 (2010).

    Article  Google Scholar 

  18. H.-B. LI, Z.-H. Jiang, H. Feng, Q.-F. Ma, and D.-P. Zhan, J. Iron Steel Res. Int. 19, 43 (2012).

    Article  Google Scholar 

  19. A. Rokanopoulou and G. D. Papadimitriou, Mater. Sci. Technol. 27, 1391 (2011).

    Article  Google Scholar 

  20. K. Yang and Y. Ren, Sci. Technol. Adv. Mater. 11, 014105 (2010).

    Article  Google Scholar 

  21. M. O. Speidel, High Nitrogen Steels-HNS 88, 92 (1988).

    Google Scholar 

  22. J. Menzel, G. Stein, and P. Dahlmann, in Proc. 1st Int. Conf. High Nitrogen Steels, p. 147, Lille, France (1988).

    Google Scholar 

  23. P. J. Uggowitzer and M. Harzenmoser, in Proc. 1st Int. Conf. High Nitrogen Steels, p. 174, Lille, France (1988).

    Google Scholar 

  24. M. O. Speidel, in Proc. 2nd Int. Conf. High Nitrogen Steels, pp. 128–131, Stahl Und Eisen, Dusseldorf, Germany (1990).

    Google Scholar 

  25. F. Vanderschaeve, R. Taillard, and J. Foct, J. Mater. Sci. 30, 6035 (1995).

    Article  Google Scholar 

  26. J. W. Simmons, Mater. Sci. Eng. A 207, 159 (1996).

    Article  Google Scholar 

  27. H. Baba, T. Kodama, and Y. Katada, Corros. Sci. 44, 2393 (2002).

    Article  Google Scholar 

  28. H. Hänninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, J. Mater. Process. Technol. 117, 424 (2001).

    Article  Google Scholar 

  29. T.-H. Lee, C.-S. Oh, S.-J. Kim, and S. Takaki, Acta Mater. 55, 3649 (2007).

    Article  Google Scholar 

  30. T.-H. Lee, C.-S. Oh, and S.-J. Kim, Scr. Mater. 58, 110 (2008).

    Article  Google Scholar 

  31. M. Pozuelo, J. E. Wittig, J. A. Jiménez, and G. Frommeyer, Metall. Mater. Trans. A 40, 1826 (2009).

    Article  Google Scholar 

  32. S. Degallaix, J. Foct, and A. Hendry, Mater. Sci. Technol. 2, 946 (1986).

    Article  Google Scholar 

  33. B. Kartik, R. Veerababu, M. Sundararaman, and D. V. V. Satyanarayana, Mater. Sci. Eng. A 642, 288 (2015).

    Article  Google Scholar 

  34. Y. Sun, X. Li, and T. Bell, Mater. Sci. Technol. 15, 1171 (1999).

    Article  Google Scholar 

  35. R. E. Stoltz and J. B. Vander Sande, Metall. Trans. A 11, 1033 (1980).

    Article  Google Scholar 

  36. V. G. Gavriljuk and S. P. Jephimenko, in Proc. 2nd Int. Conf. High Nitrogen Steels HNS 90, p. 11, Stahleisen, Dussldorf, Germany (1990).

    Google Scholar 

  37. V. Gerold and H. P. Karnthaler, Acta Metall. 37, 2177 (1989).

    Article  Google Scholar 

  38. M. Grujicic, J.-O. Nilson, W. S. Owen, and T. Thorcaldsson, in HNS 88 Conf. Proc., p. 151, Institute of Metals, London (1989).

    Google Scholar 

  39. J. Sassen, A. J. Garrat-Reed, and W. S. Owen, in HNS 88 Conf. Proc., p. 159, the Institute of Metals, London (1989).

    Google Scholar 

  40. C. Crussard and B. Jaoul, Rev. Met. Paris XLVII, 589 (1950).

    Google Scholar 

  41. R. E. Reed-Hill, W. R. Cribb, and S. N. Monteiro, Metall. Mater. Trans. B 4, 2665 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. V. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, B., Veerababu, R. & Satyanarayana, D.V.V. Effect of aging and oxidation on strain hardening behaviour of a nickel-free high nitrogen austenitic stainless steel. Met. Mater. Int. 22, 413–423 (2016). https://doi.org/10.1007/s12540-016-5611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5611-y

Keywords

Navigation