Skip to main content
Log in

Ambient and cryogenic S-N fatigue behavior of Fe15Mn steel and its weld

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The S-N fatigue behavior of Fe15Mn (Fe-0.7C-15Mn-2Al) austenitic steel, including base metal and butt-welded joint, was investigated at 298 K and 110 K, and the results were compared to those of STS304L (Fe-1Si-2Mn- 20Cr-10Ni) counterparts. Both specimens showed improved resistance to S-N fatigue with decreasing temperature from 298 K to 110 K. The resistance to S-N fatigue of Fe15Mn steel was greater at 298 K, while it was lower at 110 K, than STS304L steel. Unlike STS304L, Fe15Mn steel did not show any notable transformation induced plasticity and twining-induced plasticity effect under fatigue loading at ambient and cryogenic temperatures. The S-N fatigue behavior of Fe15Mn steel was strongly dependent on tensile strength at both ambient and cryogenic temperatures. Similar S-N fatigue behavior was also observed for the butt-welded joints of Fe15Mn steel. The S-N fatigue behavior of Fe15Mn steel and its weld was discussed based on the fractographic and microscopic observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).

    Article  Google Scholar 

  2. D. H. Jeong, S. G. Lee, W. K. Jang, J. K. Choi, Y. J. Kim, and S. S. Kim, Metall. Mater. Trans. A 44A, 4601 (2013).

    Article  Google Scholar 

  3. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige, Scr. Mater. 59, 963 (2008).

    Article  Google Scholar 

  4. L. W. Tsay, Y. C. Chen, and S. L. I. Chan, Int. J. Fatigue, 23, 103 (2001).

    Article  Google Scholar 

  5. M. R. Krishnadev and R. Ghosh, Metall. Mater. Trans. A 10A, 1941 (1979).

    Article  Google Scholar 

  6. J. H. Baek, C. M. Kim, W. S. Kim, and Y. T. Kho, Korean J. Met. Mater. 7, 579 (2001).

    Google Scholar 

  7. D. H. Jeong, S. G. Lee, I. S. Seo, J. Y. Yoo, and S. S. Kim, Met. Mater. Int. 21, 14 (2015).

    Article  Google Scholar 

  8. D. H. Jeong, S. G. Lee, I. S. Seo, J. Y. Yoo, and S. S. Kim, Met. Mater. Int. 21, 22 (2015).

    Article  Google Scholar 

  9. I. Karaman, H. Sehitoglu, A. J. Beaudoin, Y. I. Chumlyakov, H. J. Maier, and C. N. Tome, Acta Mater. 48, 2031 (2000).

    Article  Google Scholar 

  10. I. Karaman, H. Sehitoglu, K. Gall, Y. I. Chumlyakov, and H. J. Maier, Acta Mater. 48, 1345 (2000).

    Article  Google Scholar 

  11. S. Curtze and V. T. Kuokkala, Acta Mater. 58, 5129 (2010).

    Article  Google Scholar 

  12. W. C. Leslie and G. C. Rauch, Metall. Mater. Trans. A 9A, 4334 (1978).

    Google Scholar 

  13. K. Ishida and T. Nishizawa, Trans. Jpn. Inst. Met. 15, 225 (1974).

    Article  Google Scholar 

  14. R. E. Schramm and R. P. Reed, Metall. Mater. Trans. A 6A, 1345 (1975).

    Article  Google Scholar 

  15. T. Niendorf, F. Rubitschek, H. J. Maier, J. Niendorf, H. A. Richard, and A. Frehn, Mater. Sci. Eng. A 527, 2412 (2010).

    Article  Google Scholar 

  16. K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Y. Choi, and C. S. Lee, Mater. Sci. Eng. A 527, 3651 (2010).

    Article  Google Scholar 

  17. D. Canadinc, H. Sehitoglu, H. J. Maier, and Y. I. Chumlyakov, Acta Mater. 53, 1831 (2005).

    Article  Google Scholar 

  18. S. I. Hong and C. Laird, Acta Metall. 38, 1581 (1990).

    Article  Google Scholar 

  19. W. S. Owen and M. Grujicic, Acta Mater. 47, 111 (1999).

    Article  Google Scholar 

  20. G. Frommeyer, U. Brüx, and P. Neumann, ISIJ Int. 43(3), 438 (2003).

    Article  Google Scholar 

  21. A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Mater. Sci. Eng. A 184, 483 (2008).

    Google Scholar 

  22. A. S. Hamada, L. P. Karjalainen, and M. C. Somani, Mater. Sci. Eng. A 467, 114 (2007).

    Article  Google Scholar 

  23. J. K. Kim, L. Chen, H. S. Kim, S. K. Kim, Y. Estrin, and B. C. de Cooman, Metall. Mater. Trans. A 40A, 3147 (2009).

    Article  Google Scholar 

  24. Y. S. Han and S. H. Hong, Mater. Sci. Eng. A 222, 76 (1997).

    Article  Google Scholar 

  25. S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Mater. Sci. Eng. A 387, 158 (2004).

    Article  Google Scholar 

  26. T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, and H. J. Maier, Mater. Sci. Eng. A 499, 518 (2009).

    Article  Google Scholar 

  27. A. S. Hamada, L. P. Karjalainen, and J. Puustinen, Mater. Sci. Eng. A 517, 68 (2009).

    Article  Google Scholar 

  28. T. Niendorf, D. Canadinc, H. J. Maier, and I. Karaman, Scr. Mater. 60, 344 (2009).

    Article  Google Scholar 

  29. S. Mahajan and G. Y. Chin, Acta Metall. 21, 1353 (1973).

    Article  Google Scholar 

  30. E. El-Danaf, S. R. Kalidindi, and R. Doherty, Metall. Mater. Trans. A 30A, 1223 (1999).

    Article  Google Scholar 

  31. Z. S. Basinski and S. J. Basinski, Acta Metall. 33, 1307 (1985).

    Article  Google Scholar 

  32. L. P. Karjalainen, T. Taulavuori, M. Sellman, and A. Kyröläinen, Steels Res. Int. 79, 404 (2008).

    Google Scholar 

  33. G. Baudry and A. Pineau, Mater. Sci. Eng. 28, 229 (1977).

    Article  Google Scholar 

  34. ASTM Standard E466, Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue test of Metallic Materials, Annual Book of ASTM Standards, 03.01 (2002).

    Google Scholar 

  35. ASM International Handbook Committee, ASM Handbook 9- Metallography and Microstructures 2004, ASM International, 9, 1671 (1985).

    Google Scholar 

  36. S. S. Kim, J. K. Kwon, Y. J. Kim, W. K. Jang, S. L. Lee, and J. K. Choi, Met. Mater. Int. 19, 1 (2013).

    Article  Google Scholar 

  37. D. H. Jung, J. K. Kwon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Metall. Mater. Trans. A 45A, 654 (2014).

    Article  Google Scholar 

  38. Z. Mei and J. W. Morris Jr., Metall. Mater. Trans. A, 21A 3137 (1990).

    Article  Google Scholar 

  39. J. W. Morris Jr., J. W. Chan, and Z. Mei, Fourteenth International Cryogenic Engineering Conference and International Cryogenic Materials Conference, p.1, Elsevier Science Inc., Kiev, Ukraine (1992).

    Google Scholar 

  40. F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati and R. Surkialiabad, Mater. Sci. Eng. A 527, 7334, (2010).

    Article  Google Scholar 

  41. D. T. Pierce, J. A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig, Acta Mater. 68, 238 (2014).

    Article  Google Scholar 

  42. A. Saeed-Akbaari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40A, 3076 (2009).

    Article  Google Scholar 

  43. S. S. Kim, J. K. Kwon, Y. J. Kim, W. K. Jang, S. G. Lee, and J. K. Choi, Metall. Mater. Int. 19, 1 (2013).

    Article  Google Scholar 

  44. J. K. Kwon, D. H. Ahn, D. H. Jeong, Y. J. Kim, N. S. Woo, and S. S. Kim, Korean J. Met. Mater. 52, 757 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D., Park, T., Lee, J. et al. Ambient and cryogenic S-N fatigue behavior of Fe15Mn steel and its weld. Met. Mater. Int. 21, 453–460 (2015). https://doi.org/10.1007/s12540-015-4397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4397-7

Keywords

Navigation