Skip to main content
Log in

Fracture criterion for AZ31 Mg alloy plate at elevated temperature

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The fracture criterion was characterized for an AZ31 Mg alloy plate with the 3.0 mm thickness at the elevated temperature of 250 °C in this work. In order to properly characterize the fracture criterion, its mechanical properties were also characterized. As for mechanical properties, simple tension tests were performed to calibrate the Hill1948 yield function. Also, in order to account for the hardening deterioration (softening) behavior beyond the uniform deformation limit, the flow curves of the Mg alloy plate were numerically obtained based on the inverse calibration method, in which strain rate sensitivity was also considered. As for the fracture criterion, effective fracture strains, which are dependent on stress triaxiality and deformation paths, were numerically characterized utilizing experimental data based on specimens with four different shapes newly developed. For comparison purposes, empirical fracture criteria such as the Cockcroft-Latham, Brozzo, Ayada and Clift models were also calibrated. For validation purposes, the five fracture criteria were applied for a real part (an EL-cover) drawing case and the result confirmed that the fracture criterion developed in this work performed best among the five models tried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lee, Y.-H. Chen, and J.-Y. Wang, J. Mater. Process. Tech. 124, 19 (2002).

    Article  Google Scholar 

  2. E. Doege and K. Droder, J. Mater. Process. Tech. 115, 14 (2001).

    Article  Google Scholar 

  3. F.-K. Chen and T.-B. Huang, J. Mater. Process. Tech. 142, 643 (2003).

    Article  Google Scholar 

  4. H. Palaniswamy, G. Ngaile, and T. Altan, J. Mater. Process. Tech. 146, 52 (2004).

    Article  Google Scholar 

  5. S. H. Zhang, K. Zhang, Y. C. Xu, Z. T. Wang, Y. Xu, and Z. G. Wang, J. Mater. Process. Tech. 185, 147 (2007).

    Article  Google Scholar 

  6. S. Yoshihara, K.-I. Manabe, and H. Nishimura, J. Mater. Process. Tech, 170, 579 (2005).

    Article  Google Scholar 

  7. H. J. Kim, S. C. Choi, K. T. Lee, and H. Y. Kim, Mater Trans. 49, 1112 (2008).

    Article  Google Scholar 

  8. Y. Lee, Y. Kwon, S. Kang, S. Kim, and J. Lee, J. Mater. Process. Tech. 201, 431 (2008).

    Article  Google Scholar 

  9. S. C. Choi, H. Y. Kim, S. M. Hong, Y. S. Shin, G. H. Lee, and H. J. Kim, Met. Mater. Int. 15, 575 (2009).

    Article  Google Scholar 

  10. M. Cockcroft and D. Latham, J Inst Metals. 96, 33 (1968).

    Google Scholar 

  11. P. Brozzo, B. Deluca, and R. Rendina, Proc. 7th biennal Conf. IDDR, Amsterdam (1972).

    Google Scholar 

  12. M. Ayada, T. Higashino, and K. Mori, Advanced Technology of Plasticity 1987, 1, 553–558 (1987).

    Google Scholar 

  13. S.-W. Kim and Y.-S. Lee, Metall Mater Trans. B. 1(2013).

    Google Scholar 

  14. I. C. Jung, Y. K. Kim, T. H. Cho, S. H. Oh, T. E. Kim, S. W. Shon, W. T. Kim, and D. H. Kim, Met. Mater. Int. 20, 99 (2014).

    Article  Google Scholar 

  15. S. H. Park, H. S. Kim, and B. S. You, Met. Mater. Int. 20, 291 (2014).

    Article  Google Scholar 

  16. C. W. Ha and N. J. Park, Korean J. Met. Mater. 52, 589 (2014).

    Article  Google Scholar 

  17. K. Iwanaga, H. Tashiro, H. Okamoto, and K. Shimizu, J. Mater. Process. Tech. 155–156, 1313 (2004).

    Article  Google Scholar 

  18. Y. Chino, H. Iwasaki, and M. Mabuchi, Mater. Sci. Eng. A 466, 90 (2007).

    Article  Google Scholar 

  19. J. Deng, Y. Lin, S.-S. Li, J. Chen, and Y. Ding, Materials. Design. 49, 209 (2013).

    Article  Google Scholar 

  20. K. Chung, N. Ma, T. Park, D. Kim, D. Yoo, and C. Kim, Int. J. Plasticity. 27, 1485 (2011).

    Article  Google Scholar 

  21. N. Ma, T. Park, D. Kim, C. Kim, and K. Chung, Met. Mater. Int. 16, 427 (2010).

    Article  Google Scholar 

  22. K. Chung, H. Kim, and C. Lee, Int. J. Plasticity. 58, 3 (2014).

    Article  Google Scholar 

  23. K. Chung, C. Lee, and H. Kim, Int. J. Plasticity. 58, 35 (2014).

    Article  Google Scholar 

  24. T. Al-Samman and G. Gottstein, Mater. Sci. Eng. A, 490, 411 (2008).

    Article  Google Scholar 

  25. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama, Mater. Trans. 44, 445 (2003).

    Article  Google Scholar 

  26. S. E. Clift, P. Hartley, C. Sturgess, and G. Rowe, Int. J. Mech. Sci. 32, 1 (1990).

    Article  Google Scholar 

  27. R. Hill, Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, pp. 281–297(1948).

    Google Scholar 

  28. Y. Bao and T. Wierzbicki, Int. J. Mech. Sci. 46, 81 (2004).

    Article  Google Scholar 

  29. M. Luo, M. Dunand, and D. Mohr, Int. J. Plasticity. 32–33, 36 (2012).

    Article  Google Scholar 

  30. R. Hill, The Mathematical Theory of Plasticity, pp.318–321, Oxford University Press, Oxford (1950).

    Google Scholar 

  31. V. Tvergaard and A. Needleman, Acta metallurgica. 32, 157 (1984).

    Article  Google Scholar 

  32. A. L. Gurson, J. Eng. Mater-T. Asme. 99, 2 (1977).

    Article  Google Scholar 

  33. J. Lemaitre, J. Eng. Mater. Technol. 107, 83 (1985).

    Article  Google Scholar 

  34. Y. Bai and T. Wierzbicki, Int. J. Fracture. 161, 1 (2010).

    Article  Google Scholar 

  35. Y. Bai and T. Wierzbicki, Int. J. Plasticity. 24, 1071 (2008).

    Article  Google Scholar 

  36. M. Dunand and D. Mohr, Int J Solids Struct. 47, 1130 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwansoo Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seok, DY., Kim, D., Kim, SW. et al. Fracture criterion for AZ31 Mg alloy plate at elevated temperature. Met. Mater. Int. 21, 54–71 (2015). https://doi.org/10.1007/s12540-015-1007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-1007-7

Keywords

Navigation