Skip to main content
Log in

Effects of transition-metal ions on the morphology and electrochemical properties of δ-MnO2 for supercapacitors

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

δ-MnO2 materials doped with transition-metal cations (Zn, Co, and Ag) were successfully synthesized using a hydrothermal technique. The structures and morphologies of the obtained oxides were analyzed using X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller measurements. Additionally, the electrochemical properties were evaluated through cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic cycling measurements. The results indicate that the pure and doped samples crystallize in the δ form with a layered structure and that the Mn/Zn, Mn/Co and Mn/Ag molar ratios are all approximately 1:0.09. Both the Zn-doped and pure MnO2 materials exhibit a petal-like morphology; however, the former has a higher specific surface area of up to 98.97m2 g−1. Furthermore, the Zn-doped MnO2 exhibits a near-rectangular cyclic voltammetry (CV) curve with broad quasi-reversible redox peaks and a specific capacitance of 182.9 F g−1 at a CV scan rate of 2 mV s−1. The Co-doped material exhibits a distinct spiny-fiber morphology, and the electrochemical performance of this material is significantly worse than that of pure MnO2. The average attenuation rate of the Ag-doped material is only 0.028% after 1000 cycles, which is lower than that of pure MnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (POD), Kluwer Academic/Plenum: New York (1999).

    Book  Google Scholar 

  2. W. G. Pell, B. E. Conway, W. A. Adams, and J. de Oliveira, J. Power Sources. 80, 134 (1999).

    Article  Google Scholar 

  3. C. C. Lin and C. C. Lee, J. Appl. Electrochem. 40, 133 (2010).

    Article  Google Scholar 

  4. D. Qu, J. Power Sources. 109, 403 (2002).

    Article  Google Scholar 

  5. J. P. Zheng, P. J. Cygan, and T. R. Jow, J. Electrochem. Soc. 142, 2699 (1995).

    Article  Google Scholar 

  6. S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, and H. Yoneda, J. Power Sources. 97, 807 (2001).

    Article  Google Scholar 

  7. E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, and H. Kahlen, J. Power Sources. 84, 261 (1999).

    Article  Google Scholar 

  8. W. Wei, X. Cui, W. Chen, and D. G. Ivey, Chem. Soc. Rev. 40, 1697 (2011).

    Article  Google Scholar 

  9. J. P. Zheng, J. Huang, and T. R. Jow, J. Electrochem. Soc. 144, 2026 (1997).

    Article  Google Scholar 

  10. J. P. Zheng, Electrochem. Solid-State Lett. 2, 359 (1999).

    Article  Google Scholar 

  11. A. A. F. Grupioni, E. Arashiro, and T. A. F. Lassali, Electrochim. Acta 48, 407 (2002).

    Article  Google Scholar 

  12. C. Lin, J. A. Ritter, and B. N. Popov, J. Electrochem. Soc. 145, 4097 (1998).

    Article  Google Scholar 

  13. V. Srinivasan and J. W. Weidner, J. Power Sources. 108, 15 (2002).

    Article  Google Scholar 

  14. V. Srinivasan and J. W. Weidner, J. Electrochem. Soc. 147, 880 (2000).

    Article  Google Scholar 

  15. K. R. Prasad and N. Miura, Electrochem. Commun. 6, 849 (2004).

    Article  Google Scholar 

  16. Z. J. Lao, K. Konstantinov, Y. Tournaire, S. H. Ng, G. X. Wang, and H. K. Liu, J. Power Sources. 162, 1451 (2006).

    Article  Google Scholar 

  17. T. P. Gujar, V. R. Shinde, C. D. Lokhande, and S. H. Han, J. Power Sources. 161, 1479 (2006).

    Article  Google Scholar 

  18. W. Sugimoto, T. Ohnuma, Y. Murakami, and Y. Takasu, Electrochem. Solid-State Lett. 4, A145 (2001).

    Article  Google Scholar 

  19. H. Y. Lee and J. B. Goodenough, J. Solid State Chem. 144, 220 (1999).

    Article  Google Scholar 

  20. M. Toupin, T. Brousse, and D. Bélanger, Chem. Mater. 14, 3946 (2002).

    Article  Google Scholar 

  21. S. F. Chin, S. C. Pang, and M. A. Anderson, J. Electrochem. Soc. 149, A379 (2002).

    Article  Google Scholar 

  22. C. K. Lin, K. H. Chuang, C. Y. Lin, C. Y. Tsay, and C. Y. Chen, Surf. Coat. Technol. 202, 1272 (2007).

    Article  Google Scholar 

  23. R. Chen, T. Chirayil, P. Zavalij, and M. S. Whittingham, Solid State Ionics 86, 1 (1996).

    Article  Google Scholar 

  24. J. K. Chang and W. T. Tsai, J. Electrochem. Soc. 150, A1333 (2003).

    Article  Google Scholar 

  25. K. W. Nam and K. B. Kim, J. Electrochem. Soc. 153, A81 (2006).

    Article  Google Scholar 

  26. H. Jiang, T. Zhao, and J. Ma, Chem. Commun. 47, 1264 (2011).

    Article  Google Scholar 

  27. R. S. Kalubarme, H. S. Jadhav, and C. J. Park, Electrochimica Acta. 87, 457 (2013).

    Article  Google Scholar 

  28. F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, and P. Shen, Inorg. Chem. 45, 2038 (2006).

    Article  Google Scholar 

  29. S. Li, L. Qi, and L. Lu, RSC Advances 2, 3298 (2012).

    Article  Google Scholar 

  30. O. Ghodbane, J. L. Pascal, and F. Favier, ACS Appl. Mat. Interfaces. 1, 1130 (2009).

    Article  Google Scholar 

  31. T. M. McEvoy, J. W. Long, T. J. Smith, and K. J. Stevenson, Langmuir. 22, 4462 (2006).

    Article  Google Scholar 

  32. Z. Li, Y. Ding, Y. Xiong, and Y. Xie, Cryst. Growth Des. 5, 1953 (2005).

    Article  Google Scholar 

  33. G. M. Jacob, Q.-M. Yang, and I. Zhitomirsky, Mater. Manuf. Proc. 24, 1359 (2009).

    Article  Google Scholar 

  34. H. E. Wang, Z. Lu, D. Qian, S. Fang, and J. Zhang, J. Alloys Compd. 466, 250 (2008).

    Article  Google Scholar 

  35. M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki, and K. Ogura, Langmuir 21, 5907 (2005).

    Article  Google Scholar 

  36. J. Wen, X. Ruan, and Z. Zhou, J. Phys. Chem. Solids. 70, 816 (2009).

    Article  Google Scholar 

  37. H. Kim and B. N. Popov, J. Electrochem. Soc. 150, D56 (2003).

    Article  Google Scholar 

  38. F. Hashemzadeh, M. M. K. Motlagh, and A. Maghsoudipour, J. Sol-Gel Sci. Technol. 51, 169 (2009).

    Article  Google Scholar 

  39. J. Yan, T. Wei, J. Cheng, Z. Fan, and M. Zhang, Mater. Res. Bull. 45, 210 (2010).

    Article  Google Scholar 

  40. J. Yan, Z. Fan, T. Wei, Z. Qie, S. Wang, and M. Zhang, Mater. Sci. Eng. B 151, 174 (2008).

    Article  Google Scholar 

  41. S. Devaraj and N. Munichandraiah, J. Phys. Chem. C 112, 4406 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JW., Chen, Y. & Chen, BZ. Effects of transition-metal ions on the morphology and electrochemical properties of δ-MnO2 for supercapacitors. Met. Mater. Int. 20, 989–996 (2014). https://doi.org/10.1007/s12540-014-6001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-6001-y

Keywords

Navigation