Skip to main content
Log in

CO gas-sensing properties of CuO-TiN and CuO-TiO2 prepared via an oxidizing process of a Cu-TiN composite synthesized by a mechanically induced gas-solid reaction

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A Cu-TiN composite powder was synthesized by ball milling a Ti2Cu alloy for 25 h in an N2 pressurized atmosphere for use in CuO-TiN and CuO-TiO2 p-type sensing materials. The sensing materials were prepared via a two-step oxidizing process following an investigation of their CO gas-sensing properties. The resistances of both sensing materials increased as CO was introduced, which is typical for a p-type semiconductor at temperature higher than 200 °C. It was found that the CuO-TiN powder shows a better response above 200 °C when compared to the CuO-TiO2 powder. The highest response shown by CuO-TiN was 3.18, while CuO-TiO2 shows a response of 2.20 for 1000 ppm of CO gas at 250 °C. It is believed that the lower responses of CuO-TiO2 at temperature higher than 200 °C was due to the falloff of p-type resistances by simultaneous operation of p- and n-type semiconductors in the presence of CO gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhang and M. Liu, Sensor. Actuat. B-Chem. 69, 144 (2000).

    Article  Google Scholar 

  2. K. Zhou, R. Wang, B. Xu, and Y. Li, Nanotechnology 17, 3939 (2006).

    Article  Google Scholar 

  3. X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, J. Phys. Chem. B, 108, 5547 (2004).

    Article  Google Scholar 

  4. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater. 18, 867 (2006).

    Article  Google Scholar 

  5. W. Jia, M. Guo, Z. Zheng, T. Yu, Y. Wang, E. G. Rodriguez, and Y. Lei, Electroanal. 20, 2153 (2008).

    Article  Google Scholar 

  6. N. D. Hoa, N. V. Quy, M. A. Tuan, and N. V. Hieu, Physica E 42, 146 (2009).

    Article  Google Scholar 

  7. Y. Li, J. Liang, Z. Tao, and J. Chen, Mater. Res. Bull. 43, 2380 (2008).

    Article  Google Scholar 

  8. R. V. Kumar, T. Mastai, Y. Diamant, and A. Gedanken, J. Mater. Chem. 11, 1209 (2001).

    Article  Google Scholar 

  9. H. Wang, J. Z. Xu, J. J. Zhu, and H. Y. Chen, J. Cryst. Growth, 244, 88 (2002).

    Article  Google Scholar 

  10. Y. T. Yu, J. Sensor. Sci. Technol. 21, 456 (2012).

    Article  Google Scholar 

  11. P. G. Callahan, B. J. Jaques, B. M. Marx, A. S. Hamdy, D. D. Osterberg, and D. P. Butt, J. Nucl. Mater. 392, 121 (2009).

    Article  Google Scholar 

  12. M. Ghasdi and H. Alamdari, Sensor. Actuat. B 148, 478 (2010).

    Article  Google Scholar 

  13. Y. Noh and O. Song, Korean J. Met. Mater. 52, 61 (2014).

    Article  Google Scholar 

  14. N. Seo, S. Jeon, Y. Choi, M.-S. Jeon, H.-G. Shin, and H. Lee, Korean J. Met. Mater. 52, 81 (2014).

    Article  Google Scholar 

  15. Y. Androussi, D. Ferre, and A. Lefebvre, Appl. Surf. Sci. 177, 258 (2001).

    Article  Google Scholar 

  16. K. Chatterjee, J. M. Howe, W. C. Johnson, and M. Murayama, Acta Mater. 52, 2923 (2004).

    Article  Google Scholar 

  17. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensor. Actuat. B 3, 147 (1991).

    Article  Google Scholar 

  18. T.-J. Huang and D.-H. Tsai, Catal. Lett. 87, 3 (2003).

    Article  Google Scholar 

  19. W.-Y. Uen, Z.-Y. Li, S.-M. Lan, T.-N. Yang, and S.-M. Liao, Thin Solid Films 516, 99 (2007).

    Article  Google Scholar 

  20. S.-H. Song, X. Wang, and P. Xiao, Mater. Sci. Eng B 94, 40 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Shin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, CH., Kim, HS., Yu, YT. et al. CO gas-sensing properties of CuO-TiN and CuO-TiO2 prepared via an oxidizing process of a Cu-TiN composite synthesized by a mechanically induced gas-solid reaction. Met. Mater. Int. 20, 323–328 (2014). https://doi.org/10.1007/s12540-014-2027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-2027-4

Key words

Navigation