Skip to main content
Log in

High temperature high cycle fatigue behavior of new aluminum alloy strengthened by (Co, Ni)3Al4 particles

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

High cycle fatigue (HCF) behavior of a new heat-resistant aluminum alloy at elevated temperature was investigated. This alloy consists of an α-Al matrix, a small amount of precipitated Mg2Si, and distributed (Co, Ni)3Al4 strengthening particles. HCF tests were conducted with a stress ratio of (R)=0 and a frequency of (F)=30 Hz at 130 °C. The fatigue limit (maximum stress) of this alloy was 120 MPa at 107 cycles. This is a value superior to that of conventional heat-resistant aluminum alloys such as the A319 alloy. Furthermore, regardless of the stress conditions, the new heat-resistant Al alloy has an outstanding fatigue life at high temperatures. The results of fractography observation showed that second phases, especially (Co, Ni)3Al4 particles, were effective to the resistance of fatigue crack initiation and propagation. On the other hand, Mg2Si particles were more easily fractured by the fatigue crack. This study also clarifies the micromechanism of fatigue deformation behavior at elevated temperature related to its microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000).

    Article  Google Scholar 

  2. Haizhi Ye, J. Mater. Eng. Perform. 12, 288 (2003).

    Article  Google Scholar 

  3. D. A. Lados and D. Apelian, Eng. Fract. Mech. 75, 821 (2008).

    Article  Google Scholar 

  4. R. A. Siddiqui, H. A. Abdullah, and K. R. Al-Belushi, J. Mater. Process. Tech. 102, 234 (2000).

    Article  Google Scholar 

  5. A. J. Moffat, S. Barnes, B. G. Mellor, and P. A. S. Reed, Int. J. Fatigue 27, 1564 (2005).

    Article  Google Scholar 

  6. D. Canadinc, H. J. Maier, P. Gabor, and J. May, Mater. Sci. Eng. A 496, 114 (2008).

    Article  Google Scholar 

  7. G. Zhang, J. Zhang, B. Li, and W. Cai, Mater. Sci. Eng. A 561, 26 (2013).

    Article  Google Scholar 

  8. A. M. A. Mohamed, F. H. Samuel, and S. Al kahtani, Mater. Sci. Eng. A 577, 64 (2013).

    Article  Google Scholar 

  9. Q. Li, T. Xia, Y. Lan, W. Zhao, L. Fan, and P. Li, J. Alloy. Compd. 562, 52 (2013).

    Google Scholar 

  10. Y. Uematsu, K. Tokaji, and M. Kawamura, Compos. Sci. Technol. 68, 2785 (2008).

    Article  Google Scholar 

  11. Y. Sugimura and S. Suresh, Metallur. Trans. A 23, 2231 (1992).

    Article  Google Scholar 

  12. O. Hartmann, M. Kemnitzer, and H. Biermann, Int. J. Fatigue 24, 215 (2002).

    Article  Google Scholar 

  13. M. Papakyriacou, H. R. Mayer, S. E. Stanzl-Tschegg, and M. Groschl, Int. J. Fatigue 18, 475 (1996).

    Article  Google Scholar 

  14. S. B. Kim, D. A. Koss, and D. A. Gerard, Mater. Sci. Eng. A 277, 123 (2000).

    Article  Google Scholar 

  15. C. S. Shin and J. C. Huang, Int. J. Fatigue 32, 1573 (2010).

    Article  Google Scholar 

  16. S. H. Choi, S. Y. Sung, H. J. Choi, Y. H. Sohn, B. S. Han, and K. A. Lee, Mater. Trans. 52, 1661 (2011).

    Article  Google Scholar 

  17. S. W. Han, K. Katsumata, S. Kumai, and A. Sato, Mater. Sci. Eng. A 337, 170 (2002).

    Article  Google Scholar 

  18. E. Rincon, H. F. Lopez, M. M. Cisneros, H. Mancha, and M. A. Cisneros, Mater. Sci. Eng. A 452, 682 (2007).

    Article  Google Scholar 

  19. J. S. Park, S. Y. Sung, B. S. Han, C. Y. Jung, and K. A. Lee, Korean J. Met. Mater. 48, 28 (2010).

    Article  Google Scholar 

  20. R. Ammar, A. M. Samuel, and F. H. Samuel, Mater. Sci. Eng. A 473, 65 (2008).

    Article  Google Scholar 

  21. Q. G. Wang, D. Apelian, and D. A. Lados, J. Light Metals 1, 73 (2001).

    Article  Google Scholar 

  22. G. Henaff, F. Menan, and G. Odemer, Eng. Fract. Mech. 77, 1975 (2010).

    Article  Google Scholar 

  23. H. Ribes, M. Suery, G. L’esperance, and J. G. Legoux, Metallur. Trans. A 21, 2489 (1990).

    Article  Google Scholar 

  24. T. Varol and A. Canakci, Met. Mater. Int. 19, 1227 (2013).

    Article  Google Scholar 

  25. B.-J. Choi and Y.-J. Kim, Met. Mater. Int. 19, 1301 (2013).

    Article  Google Scholar 

  26. E. Rincon, H. F. Lopez, M. M. Cisneros, and H. Mancha, Mater. Sci. Eng. A 519, 128 (2009).

    Article  Google Scholar 

  27. P. Poza and J. Llorca, Mater. Sci. Eng. A 206, 183 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee-Ahn Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Sung, SY., Han, BS. et al. High temperature high cycle fatigue behavior of new aluminum alloy strengthened by (Co, Ni)3Al4 particles. Met. Mater. Int. 20, 243–248 (2014). https://doi.org/10.1007/s12540-014-2006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-2006-9

Key words

Navigation