Skip to main content
Log in

Effect of deposition temperature on cubic boron nitride thin film deposited by unbalanced magnetron sputtering method with a nanocrystalline diamond buffer layer

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Cubic boron nitride (c-BN) films were deposited by the unbalanced magnetron sputtering method. A Si substrates coated with a nanocrystalline diamond (NCD) was used as a substrate. The deposition temperature was varied systematically from room temperature to 800 °C. A boron nitride target was used which was connected to a radio frequency power supply at 400 W. High frequency power connected to a substrate holder was used for self-biasing. The c-BN phase forms for all samples, irrespective of the deposition temperature, with a little amount of hexagonal phase existing as an intrinsic turbostratic boron nitride (t-BN) layer, whose thickness decreased with increasing temperature. The residual stress was maintained at a nearly constant compressive value. The adhesion improved markedly at high deposition temperature, but the insertion of the NCD buffer layer was ineffective in inhibiting the formation of t-BN layer under the present deposition condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin, Mater. Sci. Eng. R 21, 47 (1997).

    Article  Google Scholar 

  2. D. J. Kester, K. S. Ailey, and R. F. Davis, Dia. and Rel. Mat. 3, 332 (1994).

    Article  CAS  Google Scholar 

  3. J. Hahn, F. Richer, R. Roeder, E. Schneider, and T. Welzel, Surf. Coat. Technol. 92, 129 (1997).

    Article  CAS  Google Scholar 

  4. S. Reinke, M. Kuhr, and W. Kulisch, Dia. and Rel. Mat. 5, 508 (1996).

    Article  CAS  Google Scholar 

  5. P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, D. C. Dibble, W. M. Clift, J. A. Knapp, and J. C. Barbour, J. Appl. Phys. 82, 1617 (1997).

    Article  CAS  Google Scholar 

  6. H.-S. Kim, J.-K. Park, W.-S. Lee, and Y.-J. Baik, Thin Solid Films 519, 7871 (2011).

    Article  CAS  Google Scholar 

  7. S. Ulrich, E. Nold, K. Sell, M. Stuber, J. Ye, and C. Ziebert, Surf. Coat. Technol. 200, 6465 (2006).

    Article  CAS  Google Scholar 

  8. K. Yamamoto, M. Keunecke, and K. Bewilogua, Thin Solid Films 377–378, 331 (2000).

    Article  Google Scholar 

  9. Y. M. Chong, K. M. Leung, K. L. Ma, W. J. Zhang, I. Bello, and S. T. Lee, Dia. and Rel. Mat. 15, 1155 (2006).

    Article  CAS  Google Scholar 

  10. H. Li, H.-J. Lee, J.-K. Park, Y.-J. Baik, G.-W. Hwang, J.-H. Jeong, and W.-S. Lee, Dia. and Rel. Mat. 18, 1369 (2009).

    Article  CAS  Google Scholar 

  11. Y. K. Le and H. Oechsner, Thin Solid Films 437, 83 (2003).

    Article  CAS  Google Scholar 

  12. X. W. Zhang, H.-G. Boyen, P. Ziemann, M. Ozawa, F. Banhart, and M. Schreck, Dia. and Rel. Mat. 13, 1144 (2004).

    Article  CAS  Google Scholar 

  13. T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klays, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottensen, and J. C. Barbour, J. of Appl. Phys. 76, 3088 (1994).

    Article  CAS  Google Scholar 

  14. J. Ullmann, A. J. Kellock, and A. E. E. Baglin, Thin Solid Films 341, 238 (1999).

    Article  CAS  Google Scholar 

  15. N. Deyneka, X. W. Zhang, H.-G. Boyen, P. Ziemann, and F. Banhart, Dia. and Rel. Mat. 13, 473 (2004).

    Article  CAS  Google Scholar 

  16. Y. Sasaki, Y. Nishina, M. Sato, and K. Okamura, Phys. Rev. B 40, 1762 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Joon Baik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, ES., Park, JK., Lee, WS. et al. Effect of deposition temperature on cubic boron nitride thin film deposited by unbalanced magnetron sputtering method with a nanocrystalline diamond buffer layer. Met. Mater. Int. 19, 1323–1326 (2013). https://doi.org/10.1007/s12540-013-6029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-6029-4

Key words

Navigation