Skip to main content
Log in

Characterization of a magnesium-based alloy after hydriding-dehydriding cycling (n=1–150)

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The cycling performance of Mg-15 wt% Ni-5 wt% Fe2O3 alloy (named Mg-15Ni-5Fe2O3) was investigated by measuring the absorbed hydrogen quantity as a function of the number of cycles and by examining the variations in the phases and microstructures with cycling. The sample was hydriding-dehydriding cycled 150 times. The absorbed hydrogen quantity decreased as the number of cycles increased from the second to the 150th cycle. The Ha value varied almost linearly with the number of cycles. The maintainability of the absorbed hydrogen quantity was 73.8%, and the degradation rate was 0.007 wt%/cycle for the hydriding reaction time of 60 min. After the 9th hydriding-dehydriding cycle, Mg, Mg2Ni, MgO, and Fe were observed. After 150 cycles, the quantity of the MgO increased. The phases were analyzed using MDI JADE 6.5, a software system designed for XRD powder pattern processing, from the XRD pattern of the Mg-15Ni-5Fe2O3 alloy after the 9th hydriding-dehydriding cycle. The crystallite size and strain of the Mg were then estimated using the Williamson-Hall technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Krozer and B. Kasemo, J. Phys.: Condens. Matter 1, 1533 (1989).

    Article  CAS  Google Scholar 

  2. F. Stillesjoe, S. Olafsson, B. Hjoervarsson, and E. Karlsson, Zeit. Phys. Chem. 181, 353 (1993).

    Article  CAS  Google Scholar 

  3. J.-L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000).

    Article  CAS  Google Scholar 

  4. J. Huot, M. L. Tremblay, and R. Schulz, J. Alloys Compd. 356–357, 603 (2003).

    Article  Google Scholar 

  5. H. Imamura, M. Kusuhara, S. Minami, M. Matsumoto, K. Masanari, Y. Sakata, K. Itoh, and T. Fukunaga, Acta Mater. 51, 6407 (2003).

    Article  CAS  Google Scholar 

  6. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd. 322, L5 (2001).

    Article  CAS  Google Scholar 

  7. Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T. K. Bose, and R. Schulz, J. Alloys Compd. 347, 319 (2002).

    Article  CAS  Google Scholar 

  8. G. Barkhordarian, T. Klassen, and R. Bormann, Scripta Mater. 49, 213 (2003).

    Article  CAS  Google Scholar 

  9. G. Barkhordarian, T. Klassen, and R. Bormann, J. Alloys Compd. 407, 249 (2006).

    Article  CAS  Google Scholar 

  10. O. Friedrichs, T. Klassen, J. C. Sanchez-Lopez, R. Bormann, and A. Fernandez, Scripta Mater. 54, 1293 (2006).

    Article  CAS  Google Scholar 

  11. O. Friedrichs, F. Aguey-Zinsou, J. R. Ares Fernandez, J. C. Sanchez-Lopez, A. Justo, T. Klassen, R. Bormann, and A. Fernández, Acta Mater. 54, 105 (2006).

    Article  CAS  Google Scholar 

  12. K. F. Aguey-Zinsou, J. R. Ares Fernandez, T. Klassen, and R. Bormann, Mater. Res. Bull. 41, 1118 (2006).

    Article  CAS  Google Scholar 

  13. M. Y. Song, S. H. Baek, H. R. Park, and D. R. Mumm, Korean J. Met. Mater. 50, 64 (2012).

    CAS  Google Scholar 

  14. R. Yavari, A. LeMoulec, F. R. deCastro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, and Å. Kvick, Scripta Mater. 52, 719 (2005).

    Article  CAS  Google Scholar 

  15. B. Bogdanovic and B. Spliethoff, Int. J. Hydrogen Energy 12, 863 (1987).

    Article  CAS  Google Scholar 

  16. H. Imamura, N. Sakasai, and Y. Kajii, J. Alloys Comp. 232, 218 (1996).

    Article  CAS  Google Scholar 

  17. S. N. Kwon, H. S. Hong, H. R. Park, and M. Y. Song, Int. J. Hydrogen Energy 35, 13055 (2010).

    Article  CAS  Google Scholar 

  18. M. Y. Song, S. H. Baek, J.-L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010).

    Article  CAS  Google Scholar 

  19. C. Suryanarayana and M. Grant Norton, X-ray Diffraction, A Practical Approach, p.207–222, Plenum Press, New York (1998).

    Book  Google Scholar 

  20. S. Seiler, L. Schlapbach, Th. von Waldkirch, D. Shaltiel, and F. Stucki, J. Less-Common Met. 73, 193 (1980).

    Article  CAS  Google Scholar 

  21. M. Y. Song, M. Pezat, B. Darriet, and P. Hagenmuller, J. Mater. Sci. 20, 2958 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M.Y., Kwon, S.N., Park, H.R. et al. Characterization of a magnesium-based alloy after hydriding-dehydriding cycling (n=1–150). Met. Mater. Int. 19, 1139–1144 (2013). https://doi.org/10.1007/s12540-013-5033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5033-z

Key words

Navigation