Skip to main content
Log in

Analysis of stress states in compression stage of high pressure torsion using slab analysis method and finite element method

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

High pressure torsion (HPT) is useful for achieving substantial grain refinement to ultrafine grained/nanocrystalline states in bulk metallic solids. Most publications that analyzed the HPT process used experimental and numerical simulation approaches, whereas theoretical stress analyses for the HPT process are rare. Because of the key role of compression stage for the deformation of HPT, this paper aims to conduct a theoretical analysis and to establish a practical formula for stress and forming parameters of HPT process using the slab analysis method. Three equations were obtained via equations derivation to describe the normal stress states corresponding to the three zones of plastic deformation for HPT process as stick zone, drag zone and slip zone. As to the compression stage of HPT, the stress distribution results using the finite element method agree well with those using the slab analysis method. There are drag and stick zones on the contact surface of the HPT sample, as verified by the finite element method (FEM) and slab analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Kim and Y. Estrin, Appl. Phys. Lett. 79, 4115 (2001).

    Article  CAS  Google Scholar 

  2. J. Liu, H. Cui, X. Zhou, X. Wu, and J. Zhang, Met. Mater. Int. 18, 121 (2012).

    Article  Google Scholar 

  3. H. S. Kim, C. Suryanarayana, and S. J. Kim, Powder Metall. 41, 217 (1998).

    Google Scholar 

  4. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, JOM. 58, 33 (2006).

    Article  Google Scholar 

  5. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  CAS  Google Scholar 

  6. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta Mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  7. M. I. Latypov, I. V. Alexandrov, Y. E. Beygelzimer, S. Lee, and H. S. Kim, Comput. Mater. Sci. 60, 194 (2012).

    Article  CAS  Google Scholar 

  8. A. P. Zhilyaev, K. O. Ishi, T. G. Langdon, and T. R. McNelley, Mater. Sci. Eng. A 410–411, 277 (2005).

    Google Scholar 

  9. K. Edalati, T. Fujioka, and Z. Horita, Mater. Sci. Eng. A 497, 168 (2008).

    Article  Google Scholar 

  10. R. B. Figueiredo, M. T. Aguilar, C. PauloR, and T. G. Langdon, Metall. Mater. Trans. A 42, 3013 (2011).

    Article  CAS  Google Scholar 

  11. A. Hohenwarter, A. Bachmaier, B. Gludovatz, S. Scheriau, and R. Pippan, Int. J. Mater. Res. 100, 1653 (2009).

    Article  CAS  Google Scholar 

  12. G. Y. Tzou, H. H. Hsu, and Y. H. Hsiao, J. Mater. Proc. Tech. 177, 150 (2006).

    Article  CAS  Google Scholar 

  13. L. Huang, H. Yang, M. Zhan, and Y. L. Li, J. Mater. Proc. Tech. 201, 267 (2008).

    Article  CAS  Google Scholar 

  14. D. W. Zhang, H. Yang, and Z. C. Sun, J. Mater. Proc. Tech. 210, 258 (2010).

    Article  CAS  Google Scholar 

  15. X. C. Tan, Tribolo. Int. 35, 385 (2002).

    Article  CAS  Google Scholar 

  16. N. Bay and G. Gerved, J. Mechan. Working Tech. 14, 263 (1987).

    Article  Google Scholar 

  17. D. R. Hayhurst and M. W. Chan, Int. J. Mechan. Sci. 47, 1 (2005).

    Article  Google Scholar 

  18. Y. P. Song, W. K. Wang, D. S. Gao, E. Y. Yoon, D. J. Lee, C. S. Lee, and H. S. Kim, J. Mater. Sci. 48, 4698 (2013).

    Article  CAS  Google Scholar 

  19. B. Roberto, P. Henrique, M. Teresa, R. Paulo, and T. G. Terence, Acta Mater. 60, 3190 (2012).

    Article  Google Scholar 

  20. S. C. Yoon, Z. Horita, and H. S. Kim, J. Mater. Proc. Tech. 201, 32 (2008).

    Article  CAS  Google Scholar 

  21. T. Hebesberger, H. P. Stuwe, A. Vorhauer, F. Wetscher, and R. Pippan, Acta Mater. 53, 393 (2005).

    Article  CAS  Google Scholar 

  22. Y. Cao, Y. B. Wang, S. N. Alhajeri, X. Z. Liao, W. L. Zheng, S. P. Ringer, T. G. Langdon, and Y. T. Zhu, Mater. Sci. 45, 765 (2010).

    Article  CAS  Google Scholar 

  23. A. Vorhauer and R. Pippan, Scripta Mater. 51, 921 (2004).

    Article  CAS  Google Scholar 

  24. Y. P. Song, E. Y. Yoon, D. J. Lee, J. H. Lee, and H. S. Kim, Mater. Sci. Eng. A 13–14, 4840 (2011).

    Google Scholar 

  25. H. S. Kim, J. Mater. Proc. Tech. 113, 617 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuepeng Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Song, Y., Gao, D. et al. Analysis of stress states in compression stage of high pressure torsion using slab analysis method and finite element method. Met. Mater. Int. 19, 1021–1027 (2013). https://doi.org/10.1007/s12540-013-5014-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5014-2

Key words

Navigation