Skip to main content
Log in

Finite-element analysis of a vertical twin-roll casting

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Metallic strips can be produced by twin-roll casting, in which the melt is cooled, solidified, and rolled to a specific thickness. In the present study, the rigid-thermoviscoplastic finite-element method was applied to the analysis of complex phenomena including melt flow, heat transfer, solidification, and plastic deformation occurring in a vertical twin-roll casting of magnesium alloy AZ31. The melt was found to be confined in rotational motions of two symmetric vortexes developed at the roll entrance, and thus only the melt near the nozzle wall became solidified and rolled to a sheet. As the nozzle thickness increased, the vortex increased in size resulting in more bifurcation and instability, which are definitely adverse to material properties of the strip. The maximum cooling rate of 600 °C/s was found at the centerline as solidification took place at the roll exit. Other findings are also discussed including roll force, roll torque, and pressure distribution, which were greatly dependent upon the plastic deformation after solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsushita, K. Nakayama, H. Fukase, and S. Osada, IHI Engineering Review 42, 1 (2009).

    Google Scholar 

  2. R. E. Sanders, Jr., JOM. 64, 291 (2012).

    Article  Google Scholar 

  3. S. S. Park, W.-J. Park, C. H. Kim, B. S. You, and N. J. Kim, JOM. 61, 14 (2009).

    Article  Google Scholar 

  4. H.-K. Kim, J.-H. Cho, H.-W. Kim, and J.-C. Lee, Korean J. Met. Mater. 50, 503 (2012).

    Article  Google Scholar 

  5. H. Takuda, N. Hatta, H. Fujimoto, and F. Goto, J. Jpn. Soc. Technol. Plasticity 32, 222 (1991).

    Google Scholar 

  6. R. P. Tavares and R. I. L. Guthrie, Can. Metall. Quart. 37, 241 (1998).

    Article  Google Scholar 

  7. R. I. L. Guthrie and R. P. Tavares, Appl. Math. Model. 22, 851 (1998).

    Article  Google Scholar 

  8. C. A. Santos, J. A. Spim Jr., and A. Garcia, J. Mater. Process. Tech. 102, 33 (2000).

    Article  Google Scholar 

  9. M. A. Cruchaga, D. J. Celentano, and R. W. Lewis, Commun. Numer. Meth. En. 19, 623 (2003).

    Article  Google Scholar 

  10. J. W. Bae, C. G. Kang, and S. B. Kang, J. Mater. Process. Tech. 191, 251 (2007).

    Article  Google Scholar 

  11. J. Zeng, R. Koitzsch, H. Pfeifer, and B. Friedrich, J. Mater. Process. Tech. 209, 2321 (2009).

    Article  Google Scholar 

  12. T. Iida and R. I. L. Gutherie, The Physical Properties of Liquid Metals, pp.147–198, Clarendon Press Oxford (1988).

    Google Scholar 

  13. Y. H. Ji and J. J. Park, Mater. Sci. Eng. A 485, 299 (2008).

    Article  Google Scholar 

  14. S. M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and M. Haghshenas, Mater. Sci. Eng. A 497, 438 (2008).

    Article  Google Scholar 

  15. J. Lui and Z. Cui, J. Mater. Process. Tech. 209, 5871 (2009).

    Article  Google Scholar 

  16. Z. Liu, S. Xing, P. Bao, N. Li, S. Yao, and M. Zhang, J. Mater. Sci. Technol. 26, 461 (2010).

    Article  Google Scholar 

  17. M. Harai, J. Jpn. Soc. Technol. Plasticity 41, 1169 (2000).

    Google Scholar 

  18. M. Kiuchi and S. Sugiyama, J. Jpn. Soc. Technol. Plasticity 41, 1174 (2000).

    Google Scholar 

  19. H. M. Sahin, K. Kocatepe, R. Kayikci, and N. Akar, Energ. Convers. Manage. 47, 19 (2006).

    Article  Google Scholar 

  20. N. Cheng, N. S. Santos, J. M. V. Quaresma, G. S. Dulikravich, and A. Garcia, Int. J. Heat and Mass Tran. 52, 451 (2009).

    Article  Google Scholar 

  21. J. N. Silva, D. J. Moutinho, A. L. Moreira, I. L. Ferreira, and O. L. Rocha, Mater. Chem. Phys. 130, 179 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JJ. Finite-element analysis of a vertical twin-roll casting. Met. Mater. Int. 20, 317–322 (2014). https://doi.org/10.1007/s12540-013-4021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4021-7

Key words

Navigation