Skip to main content
Log in

Preparation of doping metal TiO2 particle/nanotube composite layer and their applications in dye-sensitized solar cells

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSCs) are composed of a dye-adsorbed nanoporous TiO2 layer on a fluorinedoped tin oxide (FTO) glass substrate, redox electrolytes, and a counter electrode. DSSCs are constructed through the application of nano-metals and TiO2 nanoparticle/TiO2 nanotube (TNT) composite particles with various compositions. The use of oxide semiconductors in the form of nanorods, nanowires, and nanotubes is an interesting approach to improve electron transport through the film. In addition, a suitable amount of TNT in the film could provide a large surface area for the adsorption of the dye. A nano-metal is proposed, wherein the conduction band (CB) prohibits the trapping effects of electrons within the TiO2 conduction band. This result is attributed to the prevention of electron recombination between the electrons in the TiO2 conduction band with dye or electrolytes. A TiO2 composite layer was coated onto FTO glass using a screen-printing method. The dye-sensitized solar cells were fabricated using N719 ruthenium (II) dye and I3/I3 electrolyte. The impedance results indicate improved electron transport at the TiO2/dye/electrolyte interface. The DSSC based on the Fe2O3/TiO2/TNT composite particle hybrids exhibits better photovoltaic performance than the cell made from only TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Grätzel, Inorg. Chem. 44, 6841 (2005).

    Article  Google Scholar 

  2. T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energ. Environ. Sci. 1, 66 (2008).

    Article  CAS  Google Scholar 

  3. F. T. Kong, S. Y. Dai, and K. J. Wang, Adv. Opto. Elect. 2007, 13 (2007).

    Google Scholar 

  4. T. Prakash, Electron. Mater. Lett. 8, 231 (2012).

    Article  CAS  Google Scholar 

  5. P. Huh and S. C. Kim, Electron. Mater. Lett. 8, 131 (2012).

    Article  CAS  Google Scholar 

  6. J. B. Xia, N. Masaki, K. J. Jiang, Y. Wada, and S. Yanagida, Chem. Lett. 35, 252 (2006).

    Article  CAS  Google Scholar 

  7. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, Sol. Energy Mater. Sol. Cells 90, 1331 (2006).

    Article  CAS  Google Scholar 

  8. C. S. Chou, R. Y. Yang, C. K. Yeh, and Y. J. Lin, Powder Technol. 194, 95 (2009).

    Article  CAS  Google Scholar 

  9. S. H. Kang, J. Y. Kim, Y. Kim, H. S. Kim, and Y. E. Sung, J. Phys. Chem. C 111, 9614 (2007).

    Article  CAS  Google Scholar 

  10. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, and C. A. Grimes, Nanotechnology 17, 1446 (2006).

    Article  CAS  Google Scholar 

  11. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006).

    Article  CAS  Google Scholar 

  12. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160 (1998).

    Article  CAS  Google Scholar 

  13. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater. 11, 1307 (1999).

    Article  CAS  Google Scholar 

  14. J. S. Im, S. K. Lee, and Y. S. Lee, Appl. Surf. Sci. 257, 2164 (2011).

    Article  CAS  Google Scholar 

  15. Y. S. Jin, K. H. Kim, S. J. Park, H. H. Yoon, and H. W. Choi, J. Nanosci Nanotechnology. 11, 10971 (2011).

    Article  CAS  Google Scholar 

  16. Y. S. Jin and H. W. Choi, J. Nanosci Nanotechnology. 12, 662 (2012).

    Article  CAS  Google Scholar 

  17. C. H. Lee, K. H. Kim, K. U. Jang, S. J. Park, and H. W. Choi, Mol. Cryst. Liq. Cryst. 539, 125 (2011).

    CAS  Google Scholar 

  18. S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Grätzel, Prog. Photovolt. Res. Appl. 15, 603 (2007).

    Article  CAS  Google Scholar 

  19. S. Gagliardi, L. Giorgi, R. Giorgi, N. Lisi, T. D. Makris, E. Salernitano, and A. Rufoloni, Superlattices Microstruct. 46, 205 (2009).

    Article  CAS  Google Scholar 

  20. Q. Qin, J. Tao, and Y. Yang, Synth. Met. 160, 1167 (2010).

    Article  CAS  Google Scholar 

  21. K. D. Becker, M. Schrader, H. S. Kwon, and H. I. Yoo, Phys. Chem. Chem. Phys. 11, 3082 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Wook Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CH., Kim, K.H., Bark, C.W. et al. Preparation of doping metal TiO2 particle/nanotube composite layer and their applications in dye-sensitized solar cells. Met. Mater. Int. 19, 1355–1359 (2013). https://doi.org/10.1007/s12540-013-0640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-0640-2

Key words

Navigation