Skip to main content
Log in

Cold cracking susceptibility of boron added high-strength bainitic steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study evaluated the cold cracking susceptibility of high-strength bainitic steels having a strength level of over 800 MPa and 1.1 GPa according to their respective chemical compositions. For evaluation of cold cracking susceptibility, a modified implant test was employed. Two different shielding gases (100% CO2 gas and 98% CO2 mixed with 2% H2 gas) were used to estimate the effect of diffusible hydrogen on the cold cracking. The diffusible hydrogen contents measuring 100% CO2 and 98% CO2+2% H2 gas were recorded as 0.58 and 9.01 ml/100 g, respectively. In the case of the lower hydrogen content, cold cracking susceptibility was very low in spite of the very high strength of the base steel regardless of chemical composition and rolling condition. However, when the mixed shielding gas was used, cold cracking susceptibility increased due to an increase in the hydrogen content. Most notably, the cold cracking resistance of steels containing higher alloy content deteriorated significantly due to the higher hardness of the coarsegrained heat-affected zone. However, the effect of the rolling condition on the cold cracking susceptibility turned out to be negligible compared to that of the chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Eliaz, A. Shachar, B. Tal, and D. Eliezer, Eng. Fail. Anal. 9, 167 (2002).

    Article  CAS  Google Scholar 

  2. T. Michler and J. Naumann, Int. J. Hydrog. Energy 35, 821 (2010).

    Article  CAS  Google Scholar 

  3. J. Ham, B. Kim, and S. Lee, Korean J. Met. Mater. 49, 1 (2011).

    Article  CAS  Google Scholar 

  4. S. Kou, Welding Metallurgy 2nd ed., pp.410–417, John Wiley & Sons, Inc., New Jersey (2003).

    Google Scholar 

  5. Y. Ito and K. Bessyo, J. JWS. 37, 683 (1968).

    Google Scholar 

  6. J. S. Seo, H. J. Kim, and H. S. Ryoo, Met. Mater. Int. 14, 515 (2008).

    Article  CAS  Google Scholar 

  7. J. H. Kim, J. S. Seo, H. J. Kim, H. S. Ryoo, K. H. Kim, and M. Y. Huh, Met. Mater. Int. 14, 239 (2008).

    Article  CAS  Google Scholar 

  8. J. M. Sawhill, Jr., A. W. Dix, and W. F. Savage, Weld. J. 53, 554s (1974).

    Google Scholar 

  9. F. Matsuda, H. Nakagawa, T. Tsuji, and M. Tsukamoto, Trans. JWRI 7, 71 (1978).

    CAS  Google Scholar 

  10. F. Matsuda, H. Nakagawa, T. Tsuji, and M. Tsukamoto, Trans. JWRI 7, 195 (1978).

    CAS  Google Scholar 

  11. H. Yara, Y. Makishi, K. Heshiki, H. Nakagawa, and F. Matsuda, Trans. JWRI 13, 249 (1984).

    Google Scholar 

  12. E. G. Signes and P. Howe, Weld. J. 67, 163s (1988).

    Google Scholar 

  13. S. A. Gedeon and T. W. Eagar, Weld. J. 69, 213s (1990).

    Google Scholar 

  14. G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, Int. J. Hydrog. Energy 33, 1897 (2008).

    Article  CAS  Google Scholar 

  15. G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, J. Mater. Sci. Technol. 25, 516 (2009).

    CAS  Google Scholar 

  16. K. Venkatesan, R. Sivasankari, V. Balusamy, A. Saxena, P. Jha, and R. Datta, Mater. Manuf. Process. 25, 175 (2010).

    Article  CAS  Google Scholar 

  17. S. Manimozhi, S. Suresh, and V. Muthupandi, Int. J. Adv. Manuf. Technol. 51, 217 (2010).

    Article  Google Scholar 

  18. IIW Document No. IIS/IIW-802-84 (ex Doc. IX-1240-82), International Institute of Welding (1984).

  19. JIS Z 3118, Japanese Industrial Standard 1st, 416 (1992).

  20. W. F. Smith, Structure and Properties of Engineering Alloys 2nd ed., pp.26–39, McGraw-Hill, Inc., New York (1993).

    Google Scholar 

  21. G. Krauss, Mater. Sci. Eng. A 273–275, 40 (1999).

    Google Scholar 

  22. K. Maweja, W. Stumpf, and N. Berg, Mater. Sci. Eng. A 519, 121 (2009).

    Article  Google Scholar 

  23. K. W. Andrew, JISI 203, 721 (1965).

    Google Scholar 

  24. AWS D 1.1, Structural Welding Code, American Welding Society (2000).

  25. ASME B&PV sec VIII Div. 1 Appendix R, American Society of Mechanical Engineer (1998).

  26. BS 5153: British Standard Specification for arc Welding of Carbon and Carbon Manganese Steel, British Standard (1984).

  27. T. Kasuya, N. Yurioka, and M. Okumura, Nippon Steel Technical Report No. 65, 7 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Seo, J.S. & Lee, C. Cold cracking susceptibility of boron added high-strength bainitic steels. Met. Mater. Int. 18, 1029–1036 (2012). https://doi.org/10.1007/s12540-012-6015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-6015-2

Key words

Navigation