Skip to main content
Log in

Impurity-controlled Mo films as diffusion barriers for Cu metallization

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Effects of vacuum conditions on the oxygen content and microstructure of Mo layers used with Cu gate lines as thin-film transistor-liquid crystal display diffusion barriers were investigated. Mo was deposited using ion-beam sputtering at 1.0 × 10−5 and 7.0 × 10−7 Torr. The Mo layer oxygen content and the microstructure and changes in chemical composition of the Cu/Mo/SiO2/Si layer during annealing were examined. The Mo layer microstructure was influenced by oxygen; increasing concentration increased the energy required for secondary grain growth. Growth was suppressed at high oxygen levels. Therefore, diffusion barrier performance is enhanced by finer Mo layer grain sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. N. Ibaraki, Materials chemistry and physics 43, 220 (1996).

    Article  CAS  Google Scholar 

  2. J. Echigoya, J. Enoki, T. Satoh, T. Waki, T. Ohmi, M. Otsuki, and T. Shibata, Appl. Surf. Sci. 56–58, 463 (1992).

    Article  Google Scholar 

  3. I. M. Park, S. J. Hwang, J. H. Lee, and Y. C. Joo, Met. Mater. Int. 15, 661 (2009).

    Article  CAS  Google Scholar 

  4. S. Chambers, V. Loebs, and K. Chakravorty, J. Vac. Sci. Tec. A: Vacuum, Surfaces, and Films 8, 875 (1990).

    Article  CAS  Google Scholar 

  5. C. K. Hu, B. Luther, F. B. Kaufman, J. Hummel, C. Uzoh, and D. J. Pearson, Thin Solid Films 262, 84 (1995).

    Article  CAS  Google Scholar 

  6. W. A. Lanford, P. J. Ding, W. Wang, S. Hymes, and S. P. Muraka, Thin Solid Films 262, 234 (1995).

    Article  CAS  Google Scholar 

  7. T. Tsujimura, H. Kitahara, A. Makita, P. M. Fryer, and J. Batey, Proc. Int. Display Research, pp.424–427, Society for Information Display, San Jose (1994).

    Google Scholar 

  8. J. D. McBrayer, R. Swanson, and T. Sigmon, J. Electrochem. Soc. 133, 1242 (1986).

    Article  CAS  Google Scholar 

  9. S. M. Yi, J. U. An, S. S. Hwang, J. R. Yim, Y. H. Huh, and Y. B. Park, Thin Solid Films 516, 2325 (2008).

    Article  CAS  Google Scholar 

  10. P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Muraka, Appl. Phys. Lett. 64, 2897 (1994).

    Article  CAS  Google Scholar 

  11. J. Li, J. Mayer, and E. Colgan. J. Appl. Phys. 70, 2820 (1991).

    Article  CAS  Google Scholar 

  12. H. Ono, T. Nakano, and T. Ohta. Appl. Phys. Lett. 64, 1511 (1994).

    Article  CAS  Google Scholar 

  13. Chang, C.-C., J. S. Chen, and W.-S. Hsu, J. Electrochem. Soc. 151, 746 (2004).

    Article  Google Scholar 

  14. C. M. Cho, J. H. Kim, S. R. Hwang, Y. H. Youn, and Y. J. Oh, Korean J. Met. Mater. 48, 1116 (2010).

    Article  Google Scholar 

  15. P. Majumder and C. G. Takoudis, Appl. Phys. Let. 91, 62108 (2007).

    Article  Google Scholar 

  16. C. Cabral Jr., C. Lavoie, J. M. E. Harper, and J. Jordan-Sweet, Thin Solid Films 397, 194 (2001).

    Article  CAS  Google Scholar 

  17. C. V. Thompson, Annu. Rev. Mater. Sci. 30, 159 (2000).

    Article  CAS  Google Scholar 

  18. D. S. Gianola, B. G. Mendis, X. M. Cheng, and K. J. Hemker, Mat. Sci. Eng. A 483, 637 (2008).

    Article  Google Scholar 

  19. L. A. Clevenger, N. A. Bojarczuk, K. Holloway, J. M. E. Harper, C. Cabral, R. G. Schad, F. Cardone, and L. Stolt, J. Appl. Phys. 73, 300 (1993).

    Article  CAS  Google Scholar 

  20. T. Laurila, K. Zeng, J. K. Kivilahti, J. Molarius, and I. Suni, J. Appl. Phys. 88, 3377 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Gyung Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, G.H., Park, S.M. & Park, C.G. Impurity-controlled Mo films as diffusion barriers for Cu metallization. Met. Mater. Int. 18, 517–520 (2012). https://doi.org/10.1007/s12540-012-3021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-3021-3

Key words

Navigation