Skip to main content
Log in

Thermal Stability of Copper-Aluminum Alloy Thin Films for Barrierless Copper Metallization on Silicon Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Copper thin films with thickness of about 500 nm doped with different aluminum concentrations have been prepared by magnetron sputtering on Si substrate and their crystal structure, microstructure, and electrical resistivity after annealing at various temperatures (200°C to 600°C) for 1 h or at 400°C for different durations (1 h to 11 h) investigated by grazing-incidence x-ray diffraction (GIXRD) analysis, scanning electron microscopy (SEM), and four-point probe (FPP) measurements. Cu-1.8Al alloy thin film exhibited good thermal stability and low electrical resistivity (∼5.0 μΩ cm) after annealing at 500°C for 1 h or 400°C for 7 h. No copper silicide was observed at the Cu-Al/Si interface by GIXRD analysis or SEM for this sample. This result indicates that doping Cu thin film with small amounts of Al can achieve high thermal stability and low electrical resistivity, suggesting that Cu-1.8Al alloy thin film could be used for barrierless Cu metallization on Si substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ohsaki, Oyo Buturi 72, 1162 (2003).

    Google Scholar 

  2. C.H. Lin and W.K. Leau, J. Electron. Mater. 38, 2212 (2009).

    Article  Google Scholar 

  3. S.M. Rossnagel and T.S. Kuan, J. Vac. Sci. Technol. B 22, 240 (2004).

    Article  Google Scholar 

  4. C.H. Lin, H.Y. Chuang, and C.R. Kao, Jpn. J. Appl. Phys. 52, 01AC12 (2013).

    Article  Google Scholar 

  5. J.P. Chu, C.H. Lin, and Y.Y. Hsieh, J. Electron. Mater. 35, 76 (2006).

    Article  Google Scholar 

  6. C.H. Lin, J.P. Chu, T. Mahalingam, T.N. Lin, and S.F. Wang, J. Electron. Mater. 32, 1235 (2003).

    Article  Google Scholar 

  7. H. Ono, T. Nakano, and T. Ohta, Appl. Phys. Lett. 64, 1511 (1994).

    Article  Google Scholar 

  8. Y.L. Kuo, J.J. Huang, S.T. Lin, C. Lee, and W.H. Lee, Mater. Chem. Phys. 80, 690 (2003).

    Article  Google Scholar 

  9. Y. Meng, Z.X. Song, D. Qian, W.J. Dai, J.F. Wang, F. Ma, Y.H. Li, and K.W. Xu, J. Alloys Compd. 588, 461 (2014).

    Article  Google Scholar 

  10. S. Tsukimoto, T. Onishi, K. Ito, M. Konno, T. Yaguchi, T. Kamino, and M. Murakami, J. Electron. Mater. 36, 1658 (2007).

    Article  Google Scholar 

  11. X.J. Wang, X.P. Dong, and C.H. Jiang, Trans. Nonferrous Met. Soc. China 20, 217 (2010).

    Article  Google Scholar 

  12. S. Tsukimoto, T. Moriyama, K. Ito, and K. Murakami, J. Electron. Mater. 34, 592 (2005).

    Article  Google Scholar 

  13. C.Y. Yand, S.J. Jeng, and J.S. Chen, Thin Solid Films 420, 398 (2002).

    Google Scholar 

  14. C.K. Hu and J.M.E. Harper, Mater. Chem. Phys. 52, 5 (1998).

    Article  Google Scholar 

  15. H.C. Chung and C.P. Liu, Surf. Coat. Technol. 200, 3122 (2006).

    Article  Google Scholar 

  16. J.C. Zhou, Y.Z. Li, and D.H. Huang, J. Mater. Process. Technol. 209, 774 (2009).

    Article  Google Scholar 

  17. J.P. Chu and C.H. Lin, J. Electron. Mater. 35, 1933 (2006).

    Article  Google Scholar 

  18. C.H. Lin, W.K. Leau, and C.H. Wu, Appl. Surf. Sci. 257, 553 (2010).

    Article  Google Scholar 

  19. J.P. Chu, C.H. Lin, and V.S. John, Appl. Phys. Lett. 91, 132109 (2007).

    Article  Google Scholar 

  20. S. Tsukimoto, T. Kabe, K. Ito, and M. Murakami, J. Electron. Mater. 36, 258 (2007).

    Article  Google Scholar 

  21. J. Koike and M. Wada, Appl. Phys. Lett. 87, 041911 (2005).

    Article  Google Scholar 

  22. J.P. Chu, C.H. Lin, W.K. Leau, and V.S. John, J. Electron. Mater. 38, 100 (2009).

    Article  Google Scholar 

  23. J.P. Chu and C.H. Lin, Appl. Phys. Lett. 87, 211902 (2005).

    Article  Google Scholar 

  24. M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, Thin Solid Films 339, 290 (1999).

    Article  Google Scholar 

  25. J.P. Chu, Y.Y. Hsieh, C.H. Lin, and T. Mahalingam, J. Mater. Res. 20, 1379 (2005).

    Article  Google Scholar 

  26. J.P. Gambino, 17th IEEE Int. Symp., pp. 1–7 (2010).

  27. X.N. Li, J.X. Ding, M. Wang, J.P. Chu, and C. Dong, J. Vac. Sci. Technol. A 32, 061510 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51471138 and 51301146). Support from the Ministry of Science and Technology of China (Grant Nos. 2012CB825700 and 2014DFA53040) and the Natural Science Foundation of Fujian Province of China (Grant No. 2016J01256) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Lu or X. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.P., Dai, T., Lu, Y. et al. Thermal Stability of Copper-Aluminum Alloy Thin Films for Barrierless Copper Metallization on Silicon Substrate. J. Electron. Mater. 46, 4891–4897 (2017). https://doi.org/10.1007/s11664-017-5477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5477-x

Keywords

Navigation