Skip to main content
Log in

One component metal oxide sintering additive for β-SiC based on thermodynamic calculation and experimental observations

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper examines a range of metal oxides, including those containing relatively safe elements under neutron irradiation, such as Cr, Fe, Ta, Ti, V and W, as well as widely used oxides, Al2O3, MgO and Y2O3, as a sintering additive for β-SiC theoretically and experimentally. After selecting the most probable SiC oxidation reaction at 1973–2123 K, the condition where the metal oxide additive does not decompose SiC was calculated based on the standard Gibbs formation free energies. Thermodynamic calculations revealed that Al2O3, MgO and Y2O3 could be an effective sintering additive without decomposing SiC under hot pressing conditions, which was demonstrated experimentally. On the other hand, no one component metal oxide that contains a safe element for nuclear reactor applications was found to be an effective sintering additive due to the formation of metal carbides and/or silicides. Overall, the simulation based on thermodynamic calculations was found to be quite useful for selecting effective metal oxide additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kordina and S. E. Saddow, Advances in Silicon Carbide Processing and Applications (eds. S. E. Saddow and A. Agarwal), pp. 1–27, Artech House, Boston (2004).

    Google Scholar 

  2. I. Y. Ko, S. M. Chae, and I. J. Shon, J. Kor. Inst. Met. & Mater. 48, 417 (2010).

    Article  CAS  Google Scholar 

  3. P. Baldus, M. Jansen, and D. Sporn, Science 285, 699 (1999).

    Article  CAS  Google Scholar 

  4. H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa, Compos. Part A-Appl. S. 30, 489 (1999).

    Article  Google Scholar 

  5. Y. Katoh, L. L. Snead, C. H. Henager Jr., A. Hasegawa, A. Kohyama, B. Riccardi and H. Hegeman, J. Nucl. Mater. 367-370, 659 (2007).

    Article  CAS  Google Scholar 

  6. S. Novak, K. Rade, K. König and A. R. Boccaccini, J. Eur. Ceram. Soc. 28, 2801 (2008).

    Article  CAS  Google Scholar 

  7. J. S. Nadeau, Am. Ceram. Soc. Bull. 52, 170 (1973).

    CAS  Google Scholar 

  8. L. K. L. Falk, J. Eur. Ceram. Soc. 17, 983 (1997).

    Article  CAS  Google Scholar 

  9. D. Foster and D. P. Thompson, J. Eur. Ceram. Soc. 19, 2823 (1999).

    Article  CAS  Google Scholar 

  10. K. Biswas, G. Rixecker and F. Aldinger, J. Eur. Ceram. Soc. 23, 1099 (2003).

    Article  CAS  Google Scholar 

  11. D. H. Kim and C. H. Kim, J. Am. Ceram. Soc. 73, 1431 (1990).

    Article  CAS  Google Scholar 

  12. P. Yonathan, J. H. Lee, D. H. Yoon, W. J. Kim, and J. Y. Park, Mater. Res. Bull. 44, 2116 (2009).

    Article  CAS  Google Scholar 

  13. K. Yoshida, Budiyanto, M. Imai, and T. Yano, J. Nucl. Mater. 258–263, 1960 (1998).

    Article  Google Scholar 

  14. E. Gomez, J. Echeberria, I. Iturriza, and F. Castro, J. Eur. Ceram. Soc. 24, 2895 (2004).

    Article  CAS  Google Scholar 

  15. Y. W. Kim and M. Mitomo, J. Am. Ceram. Soc. 82, 2731 (1999).

    Article  CAS  Google Scholar 

  16. R. M. Williams, B. N. Juterbock, C. R. Peters, and T. J. Whalen, J. Am. Ceram. Soc. 67, C62 (1984).

    Article  CAS  Google Scholar 

  17. A. M. Kueck and L. C. De Jonghe, J. Eur. Ceram. Soc. 28, 2259 (2008).

    Article  CAS  Google Scholar 

  18. K. Negita, J. Am. Ceram. Soc. 69, C308 (1986).

    Article  Google Scholar 

  19. S. J. Zinkle, Fusion Eng. Des. 74, 31 (2005).

    Article  CAS  Google Scholar 

  20. S. J. Zinkle, Radiat. Eff. Def. Solids 148, 447 (1999).

    Article  CAS  Google Scholar 

  21. I. Barin, Thermochemical Data of Pure Substances, pp. 1343–1359, VCH, New York (1989).

    Google Scholar 

  22. M. W. Chase Jr., NIST-JANAF Thermochemical Tables, 4th ed., pp. 649–1755, AIP, New York (1998).

    Google Scholar 

  23. H. T. G. Hentzell, A. Robertsson, L. Hultman, G. Shaofang, S. E. Hörnström, and P. A. Psaras, Appl. Phys. Lett. 50, 933 (1987).

    Article  CAS  Google Scholar 

  24. R. I. Polotskaya and V. R. Sidorko, Powder Metal. Met. 36, 315 (1997).

    Article  CAS  Google Scholar 

  25. A. K. Misra, J. Am. Ceram. Soc. 74, 345 (1991).

    Article  CAS  Google Scholar 

  26. Y. W. Kim, K. J. Kim, H. C. Kim, N. H. Cho, and K. Y. Lim, J. Am. Ceram. Soc. 94, 991 (2011).

    Article  CAS  Google Scholar 

  27. F. V. Motta, R. M. Balestra, S. Ribeiro, and S. P. Taguchi, Mater. Lett. 58, 2805 (2004).

    Article  CAS  Google Scholar 

  28. S. P. Taguchi, F. V. Motta, R. M. Balestra, and S. Ribeiro, Mater. Lett. 58, 2810 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang-Hyok Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noviyanto, A., Yoon, DH. One component metal oxide sintering additive for β-SiC based on thermodynamic calculation and experimental observations. Met. Mater. Int. 18, 63–68 (2012). https://doi.org/10.1007/s12540-012-0008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-0008-z

Key words

Navigation