Skip to main content
Log in

Study of compaction and ejection of hydrided-dehydrided titanium powder

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Three similar varieties of pure Ti hydride-dehydried (HDH) powders were tested for the understanding of the variables that have an influence on the compaction process of Ti powders. The study shows that small differences in the characteristics of the powders lead to very different behaviours in the compaction stage. Compressibility curves, friction with the die walls and ejection forces are discussed in this study. The results are compared with a commercial iron powder as a reference to complete the discussion, as well as to show the enhancements and modifications that should be performed in Ti powders to design an optimized powder suitable for being pressed in an industrial process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Donachie (ed.), Titanium. A Technical Guide, p. 1–4, ASM International, Metals Park, OH, USA (1988).

    Google Scholar 

  2. G. Lütjering and J. C. Williams, Titanium. Engineering Materials and Processes, p. 15, Springer, Berlin-Heidelberg (2003).

    Google Scholar 

  3. EHKTechnologies, Summary of Emerging Titanium Cost Reduction Technologies, A Study Performed for US Department of Energy and Oak Ridge National Laboratory, Subcontract 4000023694, USA (2004).

    Google Scholar 

  4. G. Crowley, Adv. Mater. Process. 161, 25 (2003).

    CAS  Google Scholar 

  5. G. Z. Chen, D. J. Fray, and T. W. Farthing, Nature 407, 361 (2000).

    Article  CAS  Google Scholar 

  6. EHK Technologies, Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy-Duty Vehicles. Subcontract 4000013062, USA (2002).

    Google Scholar 

  7. C. A. Lavender, Low-Cost Titanium Evaluation (ed., F. P. Report) Automotive Lightweighting Materials, Contractor: Pacific Northwest national laboratory (2004).

  8. T. E. Norgate and G. Wellwood, Jom 58, 58 (2006).

    Article  CAS  Google Scholar 

  9. J. C. Williams and E. A. Starke, Acta mater. 51, 5775 (2003).

    Article  CAS  Google Scholar 

  10. D. Raabe, B. Sander, M. Friak, D. Ma, and J. Neugebauer, Acta mater. 55, 4475 (2007).

    Article  CAS  Google Scholar 

  11. S. L. Zhu, X. M. Wang, F. X. Qin, and A. Inoue, Mater. Sci. Eng. A 459, 233 (2007).

    Article  Google Scholar 

  12. M. Karanjai, R. Sundaresan, G. V. N. Rao, T. R. R. Mohan, and B. P. Kashyap, Mater. Sci. Eng. A 447, 19 (2007).

    Article  Google Scholar 

  13. H. J. Rack and J. I. Qazi, Mater. Sci. Eng. C 26, 1269 (2006).

    Article  CAS  Google Scholar 

  14. Y. Hovanski, C. A. Lavender, and K. Scott Weil, Proc. 2008 World Congress on Powder Metallurgy & Particulate Materials (ed., MPIF), Washington D.C., USA (2008).

  15. S.-T. Hong, Y. Hovanski, C. A. Lavender, and K. S. Weil, J. Mater. Eng. Perform. 13, 382 (2008).

    Article  Google Scholar 

  16. A. Simchi and G. Veltl, Powder Metall. 49, 281 (2006).

    Article  CAS  Google Scholar 

  17. A. Laptev, O. Vyal, M. Bram, H. P. Buchkremer, and D. Stover, Powder Metall. 48, 358 (2005).

    Article  CAS  Google Scholar 

  18. H. Takamiya, M. Kondoh, and T. Saito, Cost-Affordable Titanium (eds., F. H. Froes, M. Ashraf, and D. Fray), p. 185–192, TMS, Warrendale, PA (2004).

    Google Scholar 

  19. MPIF Standard 04, Method for Determination of Apparent Density of the Free-Flowing Metal Powders using the Hall Apparatus, Metal Powder Industries Federation (1985).

  20. MPIF Standard 28, Method for Determination of Apparent Density of Non-the Free-Flowing Metal Powders using the Carney Apparatus, Metal Powder Industries Federation (1985).

  21. Powder Testing Center model PTC-03DT, User’s Manual V-20 (1996).

  22. S. St-Laurent, F. Chagnon, and Y. Thomas, Advances in Powder Metallurgy and Particulate Materials (eds., H. Ferguson and D. T. Whychell), p. 79–91, Metal Powder Industries Federation, Princeton, NJ (2000).

    Google Scholar 

  23. P.-E. Mongeon, S. Pelletier, and A. Ziani, U.S. Patent No. 6299690 (2001).

  24. P. Lemieux, S. Pelletier, P.-E. Mongeon, L. P. Lefebvre, Y. Thomas, and F. Chagnon, Advances in Powder Metallurgy and Particulate Materials (eds., B. Eisen and S. Kassam), p. 1–13, Metal Powder Industries Federation, Princeton, NJ (2001).

    Google Scholar 

  25. S. Roure, D. Bouvard, P. Dor’emus, and E. Pavier, Powder Metall. 42, 164, (1999).

    Article  CAS  Google Scholar 

  26. P. Mosbah, D. Bouvard, F. Ouedraogo, and P. Stutz, Powder Metall. 40, 269 (1997).

    CAS  Google Scholar 

  27. Y. Thomas, S. Pelletier, and J. M. McCall, Advances in Powder Metallurgy and Particulate Materials (eds., J. J. Oakes and J. H. Reinshagen), p. 11.25–11.38, Metal Powder Industries Federation, Princeton, NJ, USA (1998).

    Google Scholar 

  28. Y. Thomas, L. Azzi, T. Baazi, and S. Pelletier, Advanced in Powder Metallurgy and Particulate Materials (eds., C. Ruas and T. A. Tomlin), p. 3.84–3.96, Metal Powder Industries Federation, Princeton, NJ, USA (2005).

    Google Scholar 

  29. S. Turenne, C. Godère, Y. Thomas, and P. E. Mongeon, Powder Metall. 42, 263 (1999).

    Article  CAS  Google Scholar 

  30. E. Fukasawa, R. Murayama, and W. Kagohashi, Titanium’ 92: Science and Technology, Vol. 1–3 (eds., F. H. Froes and I. L. Caplan), p. 919–926, TMS, USA (1993).

    Google Scholar 

  31. H. Conrad, Prog. Mater. Sci. 26, 123 (1981).

    Article  CAS  Google Scholar 

  32. R. I. Jaffee, H. R. Ogden, and D. J. Maykuth, Transactions of the American Institute of Mining and Metallurgical Engineers 188, 1261–1266 (1950).

    CAS  Google Scholar 

  33. R. I. Jaffee, I. E. Campbell, T. Am. I. Min. Met. Eng. 185, 646 (1949).

    Google Scholar 

  34. L. P. Lefebvre and E. Baril, Adv. Eng. Mater. 10, 868 (2008).

    Article  CAS  Google Scholar 

  35. M. Textor, C. Sittig, V. Frauchiger, S. Tasatti, and D. M. Brunette, Titanium in Medicine, p. 171, Springer, Berlin Heidelberg (2001).

    Google Scholar 

  36. M. Ward and J. C. Billington, Powder Metall. 22, 201 (1979).

    CAS  Google Scholar 

  37. E. Klar and P. Samal, Powder Metallurgy of Stainless Steels: Processing, Microstructures, and Properties, p. 39, ASM International, Materials Park, OH, USA (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gordo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban, P.G., Thomas, Y., Baril, E. et al. Study of compaction and ejection of hydrided-dehydrided titanium powder. Met. Mater. Int. 17, 45–55 (2011). https://doi.org/10.1007/s12540-011-0207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-0207-z

Keywords

Navigation