Skip to main content
Log in

The Compactibility of Unsaturated Titanium Hydride Powders

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the effects of phase composition and hydrogen content on the compactibility of the titanium hydride powders are investigated. The crushing strength and the XRD patterns were performed. From the results of the green density, it is clear that the compressibility of the unsaturated hydride titanium powder is higher than that of TiH2. The results of the compression tests indicate that the crushing strength of unsaturated hydride titanium powder is markedly higher than that of the TiH2 and pure Ti. The relative mass fraction of each phase of the unsaturated hydride titanium powder was analyzed by Rietveld refinement of the XRD patterns. The phase composition with high compactibility of the unsaturated hydride titanium powder contains a lot of TiH1.5 and a small amount of α-Ti and TiH. There is a suitable range for each phase: TiH1.5 (70-73 wt.%), α-Ti (13-18 wt.%) and TiH (11-15 wt.%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Ivasishin and V. Moxson, Low-cost titanium hydride powder metallurgy, Titanium Powder Metallurgy: Science, Technology and Applications, M. Qian and H.F. Froes, Ed., Butterworth Heinemann, Kidlington, 2015, p 117–148

    Chapter  Google Scholar 

  2. V. Duz, M. Matviychuk, A. Klevtsov, and V. Moxson, Industrial Application of Titanium Hydride Powder, Met. Powder Rep., 2017, 72(1), p 30–38

    Article  Google Scholar 

  3. Y. Zheng, X. Yao, Y. Su, and D.L. Zhang, High Strength Titanium with a Bimodal Microstructure Fabricated by Thermomechanical Consolidation of a Nanocrystalline TiH2 Powder, Mater. Sci. Eng. A., 2017, 686, p 11–18

    Article  CAS  Google Scholar 

  4. I. Paulin, Synthesis and Characterization of Al Foams Produced by Powder Metallurgy Route Using Dolomite and Titanium Hydride as a Foaming Agents, Mater. Technol., 2014, 48(6), p 943–947

    Google Scholar 

  5. I.M. Robertson and G.B. Schaffer, Comparison of Sintering of Titanium and Titanium Hydride Powders, Powder Metall., 2010, 53(1), p 12–19

    Article  CAS  Google Scholar 

  6. D.W. Lee, H.S. Lee, J.H. Park, S.M. Shin, and J.P. Wang, Sintering of Titanium Hydride Powder Compaction, Procedia Manuf., 2015, 2, p 550–557

    Article  Google Scholar 

  7. V.V. Joshi, C. Lavender, V. Moxson, V. Duz, E. Nyberg, and K.S. Well, Development of Ti-6Al-4V and Ti-1Al-8V-5Fe Alloys Using Low-Cost TiH2 Powder Feedstock, J. Mater. Eng. Perform., 2013, 22(4), p 995–1003

    Article  CAS  Google Scholar 

  8. Y.N. Zhang, C.M. Wang, Y.G. Zhang, P. Cheng, Y.H. Wei, S.F. Xiao, and Y.G. Chen, Fabrication of Low-Cost Ti-1Al-8V-5Fe by Powder Metallurgy with TiH2 and FeV80 Alloy, Mater. Manuf. Process., 2017, 32(16), p 1869–1873

    Article  CAS  Google Scholar 

  9. O.M. Ivasishin, D.G. Savvakin, F.H. Froes, V.C. Mokson, and K.A. Bondareva, Synthesis of Alloy Ti-6Al-4V with Low Residual Porosity by a Powder Metallurgy Method, Powder. Metall. Met. C+, 2002, 41(7–8), p 382–390

    Article  CAS  Google Scholar 

  10. O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, and D.G. Savvakin, Diffusion During Powder Metallurgy Synthesis of Titanium Alloys, Defect. Diffus. Forum., 2008, 277, p 177–185

    Article  CAS  Google Scholar 

  11. B. Sharma, S.K. Vajpai, and K. Ameyama, Preparation of Strong and Ductile Pure Titanium via Two-Step Rapid Sintering of TiH2 Powder, J. Alloys Compd., 2016, 683, p 51–55

    Article  CAS  Google Scholar 

  12. C.M. Wang, Y.N. Zhang, S.F. Xiao, and Y.G. Chen, Sintering Densification of Titanium Hydride Powders, Mater. Manuf. Process., 2017, 32(5), p 517–522

    Article  CAS  Google Scholar 

  13. C.M. Wang, L. Pan, Y.N. Zhang, S.F. Xiao, and Y.G. Chen, Deoxidization Mechanism of Hydrogen in TiH2 Dehydrogenation Process, Int. J. Hydrog. Eng., 2016, 41(33), p 14836–14841

    Article  CAS  Google Scholar 

  14. C.M. Wang, Y.G. Zhang, Y.H. Wei, L.B. Mei, S.F. Xiao, and Y.G. Chen, XPS Study of the Deoxidization Behavior of Hydrogen in TiH2 Powders, Powder Technol., 2016, 302, p 423–425

    Article  CAS  Google Scholar 

  15. O.D. Neikov, D.V. Lotsko, and V.G. Gopienko, Powder Characterization and Testing, Handbook of Non-ferrous Metal Powders, O.D. Neikov, S.S. Naboychenko, and G. Dowson, Ed., Elsevier, Oxford, 2009, p 7–44

    Chapter  Google Scholar 

  16. S. Lampman, Compressibility and Compactibility of Metal Powders, ASM Handbook, Vol. 7Powder Metal Technologies and Applications (ASM International, 1998), pp. 704–716

  17. K.A. Nazari, A. Nouri, and T. Hilditch, Compressibility of a Ti-Based Alloy with Varying Amounts of Surfactant Prepared by High-Energy Ball Milling, Powder Technol., 2015, 279, p 33–41

    Article  CAS  Google Scholar 

  18. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, and Y. Zhang, Powder Metallurgy of Titanium—Past, Present, and Future, Int. Mater. Rev., 2017, 63, p 407–459

    Article  Google Scholar 

  19. J. Capus, Titanium Powder Metallurgy at POWDERMET 2015: Past, Present and Future, Met. Powder Rep., 2016, 71(1), p 25–27

    Article  Google Scholar 

  20. M. Qian, Some New Development in Titanium Powder Metallurgy, Int. J. Powder. Metall., 2011, 47(6), p 47–48

    Google Scholar 

  21. C. Machio, R. Mahaka, and H.K. Chikwanda, Consolidation of Titanium Hydride Powders During the Production of Titanium PM Parts: The Effect of Die Wall Lubricants, Mater. Des., 2016, 90, p 757–766

    Article  CAS  Google Scholar 

  22. H. Leuenberger, The Compressibility and Compactibility of Powder Systems, Int. J. Pharm., 1982, 12(1), p 41–55

    Article  CAS  Google Scholar 

  23. L. Bolzonia, E.M. Ruiz-Navasb, and E. Gordo, Quantifying the Properties of Low-Cost Powder Metallurgy Titanium Alloys, Mater. Sci. Eng. A, 2017, 687, p 47–53

    Article  Google Scholar 

  24. L. Bolzonia, E.M. Ruiz-Navasb, and E. Gordo, Understanding the Properties of Low-Cost Iron-Containing Powder Metallurgy Titanium Alloys, Mater. Des., 2016, 110, p 317–323

    Article  Google Scholar 

  25. W. Schatt and K.P. Wieters, Powder Metallurgy, Processing and Materials, EPMA-European Powder Metallurgy Association, Brussels, 1997, p 61–65

    Google Scholar 

  26. I. Paulin, B. Šuštaršič, V. Kevorkijan, S.D. Škapin, and M. Jenko, Synthesis of Aluminium Foams by the Powder-Metallurgy Process: Compacting of Precursors, Mater. Tehnol., 2011, 45(1), p 13–19

    CAS  Google Scholar 

  27. S. Verma, S. Rani, S. Kumar, and M.A.M. Khan, Rietveld Refinement, Micro-structural, Optical and Thermal Parameters of Zirconium Titanate Composites, Ceram. Int., 2018, 44(2), p 1653–1661

    Article  CAS  Google Scholar 

  28. X. Zhou, D. Liu, H.L. Bu, L.L. Deng, H.M. Liu, P. Yuan, P.X. Du, and H.Z. Song, XRD-Based Quantitative Analysis of Clay Minerals Using Reference Intensity Ratios, Mineral Intensity Factors, Rietveld, and Full Pattern Summation Methods: A Critical Review, Solid. Earth. Sci., 2018, 3(1), p 16–29

    Article  Google Scholar 

  29. S.D. Luo, Y.F. Yang, G.B. Schaffer, and M. Qian, Warm Die Compaction and Sintering of Titanium and Titanium Alloy Powders, J. Mater. Process. Technol., 2014, 214(3), p 660–666

    Article  CAS  Google Scholar 

  30. A. Hadadzadeh, M.A. Whitney, M.A. Wells, and S.F. Corbin, Analysis of Compressibility Behavior and Development of a Plastic Yield Model for Uniaxial Die Compaction of Sponge Titanium Powder, J. Mater. Process. Technol., 2017, 243, p 92–99

    Article  CAS  Google Scholar 

  31. S. Chikosha, T.C. Shabalala, and H.K. Chikwanda, Effect of Particle Morphology and Size on Roll Compaction of Ti-Based Powders, Powder Technol., 2014, 264, p 310–319

    Article  CAS  Google Scholar 

  32. M.T. Jia and D.L. Zhang, Warm compaction of titanium and titanium alloy powders, Titanium Powder Metallurgy: Science, Technology and Applications, M. Qian and H.F. Froes, Ed., Butterworth Heinemann, Kidlington, 2015, p 183–200

    Chapter  Google Scholar 

  33. Y.G. Zhang, C.M. Wang, Y. Liu, S.P. Liu, S.F. Xiao, and Y.G. Chen, Surface Characterizations of TiH2 Powders Before and After Dehydrogenation, Appl. Surf. Sci., 2017, 410, p 177–185

    Article  CAS  Google Scholar 

  34. I. Paulin, C. Donik, D. Mandrino, M. Vončina, and M. Jenko, Surface Characterization of Titanium Hydride Powder, Vacuum, 2011, 86(6), p 608–613

    Article  Google Scholar 

  35. T.M. Marcelo, V. Livramento, M.V. de Oliveira, and M.H. Carvalho, Microstructural Characterization and Interactions in Ti- and TiH2-Hydroxyapatite Vacuum Sintered Composites, Mat. Res., 2006, 9(1), p 65–71

    Article  CAS  Google Scholar 

  36. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart, Decomposition of TiH2 Studied In Situ by Synchrotron X-Ray and Neutron Diffraction, Acta Mater., 2011, 59(16), p 6318–6330

    Article  Google Scholar 

  37. G. Chen, K.D. Liss, G. Auchterlonie, H. Tang, and P. Cao, Dehydrogenation and Sintering of TiH2: An In Situ Study, Metall. Mater. Trans. A, 2017, 48(6), p 2949–2959

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Wang, C., Zhang, Y. et al. The Compactibility of Unsaturated Titanium Hydride Powders. J. of Materi Eng and Perform 27, 5752–5761 (2018). https://doi.org/10.1007/s11665-018-3659-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3659-1

Keywords

Navigation