Skip to main content
Log in

Correlation study of microstructure, hardness, and Charpy impact properties in heat affected zones of three API X80 linepipe steels containing complex oxides

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study investigated the correlation between the microstructure, hardness, and Charpy impact properties in heat affected zones (HAZs) of API X80 linepipe steels containing complex oxides. Three types of steels were fabricated by adding Ti, Al, and Mg to form complex oxides; their microstructures, hardness, and Charpy impact properties were investigated. The number of complex oxides increased as the excess amount of Ti, Al, and Mg was included in the steels. The simulated HAZs containing a number of oxides showed a high volume fraction of intra-granular transformation microstructure (IGT) region because the oxides acted as nucleation sites for the ferrites. According to the correlation study between the heat input, volume fraction of the IGT region, and Charpy impact properties, it was found that ductile fractures predominantly occurred when the volume fraction of the IGT region was 65 % or higher, and the Charpy absorbed energy was excellent over 200 J. When the volume fraction of the IGT region was 45 % or lower, the Charpy absorbed energy was poor below 50 J as brittle cleavage fractures prevailed. These findings suggest that the active nucleation of the ferrites in the oxide-containing steel HAZs is related to the improvement of the Charpy impact properties of the HAZs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Dye, Metal Construction and British Welding Journal 2, 111 (1970).

    Google Scholar 

  2. K. T. Corbett, R. R. Bowen, and C. W. Petersen, Int. J. Offshore. Polar. 14, 75 (2004).

    Google Scholar 

  3. J. Y. Koo, M. J. Luton, N. V. Bangaru, R. A. Petkovic, D. P. Fairchild, C. W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi, Proc. The 13th Int. Offshore. Polar Eng. Conf. p. 10, Honolulu, Hawaii, USA (2003).

  4. J. K. Kim, S. G. Hong, K. B. Kang, and C. Y. Kang, Met. Mater. Int. 15, 843 (2009).

    Article  Google Scholar 

  5. R. Denys, Pipeline Technology, p. 1–116, Elsevier, Amsterdam, Netherlands (2000).

    Google Scholar 

  6. J. Takamura and S. Mizoguchi, Proc. 6th Int. Iron Steel Congr., p. 591, ISIJ, Tokyo, Japan (1990).

  7. Y. S. Lee, M. C. Kim, B. S. Lee, and C. H. Lee, J. Kor. Inst. Met. & Mater. 47, 139 (2009).

    CAS  Google Scholar 

  8. N. I. Kim, S. H. Jeong, J. S. Lee, S. W. Kang, and M. H. Kim, J. Kor. Inst. Met. & Mater. 47, 195 (2009).

    CAS  Google Scholar 

  9. S. Ogibayashi, K. Yamaguchi, M. Hirai, H. Goto, H. Yamaguchi, and K. Tanaka, Proc. 6th Int. Iron Steel Congr., p. 612, ISIJ, Tokyo, Japan (1990).

  10. T. Maki, Mater. Jpn. 36, 937 (1997).

    CAS  Google Scholar 

  11. J. M. Gregg and H. K. D. K. Bhadeshia, Acta mater. 45, 739 (1997).

    Article  CAS  Google Scholar 

  12. M. Enomoto, Metals and Materials 4, 115 (1998).

    Article  CAS  Google Scholar 

  13. S. Han, H. Seong, Y. Ahn, C. I. Garcia, A. J. DeArdo, and I. Kim, Met. Mater. Int. 15, 521 (2009).

    Article  CAS  Google Scholar 

  14. G. Lee, D. Bae, and S. Park, Met. Mater. Int. 16, 317 (2010).

    Article  Google Scholar 

  15. F. J. Barbaro, P. Krauklis, and K. E. Easterling, Mat. Sci. Tech. 5, 1057 (1989).

    CAS  Google Scholar 

  16. R. O. Ritchie and R. M. Horn, Metall. Mater. Trans. A 9A, 331 (1978).

    CAS  Google Scholar 

  17. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermomechanical Processing of High-strength Low-alloy Steels, p. 80–100, Butterworth & Co. Ltd., London, UK (1988).

    Google Scholar 

  18. J.-Y. Son, J.-H. Kim, W.-B. Kim, and B.-J. Ye, Met. Mater. Int. 16, 357 (2010).

    Article  CAS  Google Scholar 

  19. K. J. Hong, S. H. Park, and J. J. Lee, J. R&D, Res. Inst. Indust. Sci. Tech. 20, 211 (2006).

    CAS  Google Scholar 

  20. ASTM Standard E23-07, Standard Test Method for Notched Bar Impact Testing of Metallic Materials, p. 1–28, ASTM, West Conshohocken, PA, USA (2007).

    Google Scholar 

  21. K. Masubuchi, Analysis of Welded Structures, p. 60, Pergaman Press, Oxford, New York (1980).

    Google Scholar 

  22. H. Fu, X. Song, Y. Lei, Z. Jiang, J. Yang, J. Wang, and J. Xing, Met. Mater. Int. 15, 345 (2009).

    Article  CAS  Google Scholar 

  23. G. Krauss and S. W. Thompson, ISIJ Int. 35, 937 (1995).

    Article  CAS  Google Scholar 

  24. C. H. Lee, H. K. D. H. Bhadeshia, and H.-C. Lee, Mater. Sci. Eng. A360, 249 (2003).

    CAS  Google Scholar 

  25. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, Metall. Mater. Trans. A 34, 2505 (2003).

    Article  Google Scholar 

  26. H. K. D. H. Bhadeshia, Bainite in Steels, 2nd ed., p. 237–276, Institute of Materials, London, UK (1992).

    Google Scholar 

  27. B. W. Choi, D. H. Seo, and J. Jang, Met. Mater. Int. 15, 373 (2009).

    Article  CAS  Google Scholar 

  28. M. Gómez, L. Rancel, and S. F. Medina, Met. Mater. Int. 15, 689 (2009).

    Article  Google Scholar 

  29. C. F. Shih, J. Mech. Phys. Solids 29, 305 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, S.Y., Oh, K., Lee, S. et al. Correlation study of microstructure, hardness, and Charpy impact properties in heat affected zones of three API X80 linepipe steels containing complex oxides. Met. Mater. Int. 17, 29–40 (2011). https://doi.org/10.1007/s12540-011-0205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-0205-1

Keywords

Navigation