Skip to main content
Log in

Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-N stainless steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-(0.3∼0.6)N stainless steels with different alloying elements were investigated by means of Charpy impact tests and microstructural analyses. The steels all exhibited ductile-to-brittle transition behavior due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductileto-brittle transition temperature (DBTT) obtained from Chapry impact tests did not coincide with that predicted by an empirical equation depending on N content in austenitic Cr-Mn-N stainless steels. Furthermore, a decrease of grain size was not effective in terms of lowering DBTT. Electron back-scattered diffraction and transmission electron microscopy analyses of the cross-sectional area of the fracture surface showed that some austenites with lower stability could be transformed to α’-martensite by localized plastic deformation near the fracture surface. Based on these results, it was suggested that when austenitic 18Cr-10Mn-N stainless steels have limited Ni, Mo, and N content, the deterioration of austenite stability promotes the formation of deformation-induced martensite and thus increases DBTT by substantially decreasing low-temperature toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Gavriljuk, H. Berns, High Nitrogen Steels, Spriner-Verlag, Berlin (1999).

    Google Scholar 

  2. N. Akdut, B. C. De Cooman, and J. Foct, Proc. of the 7th International Conference on High Nitrogen Steels, Ostend, Belgium (2004).

  3. J. D. Defilippi, K. G. Brickner, E. M. Gilbert, Trans. Metall. Soc. AIME 245, 2141 (1969).

    CAS  Google Scholar 

  4. P. Müllner, C. Solenthaler, P. J. Uggowitzer, and M. O. Speidel, Acta mater. 42, 2211 (1994).

    Article  Google Scholar 

  5. Y. Tomota and S. Endo, ISIJ Int. 30, 656 (1990).

    Article  CAS  Google Scholar 

  6. Y. Tomota, Y. Xia, and K. Inoue, Acta mater. 46, 1577 (1998).

    Article  CAS  Google Scholar 

  7. P. J. Uggowitzer, N. Paulus, and M. O. Speidel, Proc. Application of Stainless Steels’ 92, Vol. 1, p. 62, Jernkontoret, Stockholm (1992).

    Google Scholar 

  8. P. J. Uggowitzer, R. Magdowski, and M. O. Speidel, ISIJ Int. 36, 901 (1996).

    Article  CAS  Google Scholar 

  9. G. Balachandran, M. L. Bhatia, N. B. Ballal, and P. Krishna RAO, ISIJ Int. 41, 1018 (2001).

    Article  CAS  Google Scholar 

  10. Y. Kim, N. Kang, Y. Park, I. Choi, G. Kim, S. Kim, and K. Cho, J. Kor. Inst. Met. & Mater. 46, 780 (2008).

    CAS  Google Scholar 

  11. J. Talonen and H. Hänninen, Acta mater. 55, 333 (2002).

    Google Scholar 

  12. L. P. Karjalinen, T. Taulavuori, M. Sellman, and A. Kyröläinen A, Steel Res. Int. 79, 404 (2008).

    Google Scholar 

  13. B. Hwang, T.-H. Lee, C.-S. Oh, and S-J. Kim, Proc. of the 23rd Conference on Advanced Structural Materials, p. 117, The Korean Insititute of Metals and Materials, Daejeon, Korea (2009).

    Google Scholar 

  14. S. Wang, K. Yang, Y. Shan, and L. Li, Mater. Sci. Eng. A 490, 95 (2008).

    Article  Google Scholar 

  15. B. Hwang, Y. G. Kim, S. Lee, N. J. Kim, and J. Y. Yoo, Metall. Mater. Trans. A 36, 371 (2005).

    Article  Google Scholar 

  16. T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim, Acta mater. 58, 3173 (2010).

    Article  CAS  Google Scholar 

  17. T.-H. Lee, C.-S. Oh, and S.-J. Kim, Scripta mater. 58, 110 (2008).

    Article  CAS  Google Scholar 

  18. M.-X. Zhang and P. M. Kelly, Metall. Mater. Trans. A 32, 2695 (2001).

    Article  Google Scholar 

  19. J. Bernauer, G. Saller, M. O. Speidel, Proc. of the 7th International Conference on High Nitrogen Steels, p. 529, Ostend, Belgium (2004).

  20. M. Milititsky, D. K. Matlock, A. Regully, N. Dewispelaere, J. Penning, and H. Hänninen, Mater. Sci. Eng. A 496, 189 (2008).

    Article  Google Scholar 

  21. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, Inc., New York (1996).

    Google Scholar 

  22. A. Gilber, G. T. Hahn, C. N. Reid, and R. A. Wilcox, Acta metall. 12, 754 (1964).

    Article  Google Scholar 

  23. N. J. Petch, Phil. Mag. 3, 1089 (1958).

    Article  Google Scholar 

  24. F. B. Fickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd., London (1978).

    Google Scholar 

  25. S. Yamamoto, N. Yamagami, and C. Ouchi, Adv. Cryog. Eng. 32, 57 (1986).

    CAS  Google Scholar 

  26. M. Harzenmoser, R. P. Reed, P. J. Uggowitzer, M. O. Speidel, Proc. 2nd Int. Conf. High Nitrogen Steels, p. 197, Stahl & Eisen, Aachen (1990).

    Google Scholar 

  27. R. E. Schramm and R. P. Reed, Metall. Trans. A 6, 1345 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoungchul Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, B., Lee, TH. & Kim, SJ. Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-N stainless steels. Met. Mater. Int. 16, 905–911 (2010). https://doi.org/10.1007/s12540-010-1208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-1208-z

Keywords

Navigation