Skip to main content
Log in

Effects of microstructure on inverse fracture occurring during drop-weight tear testing of high-toughness X70 pipeline steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of microstructure on inverse fracture occurring in the hammer-impacted region were analyzed after conducting a drop-weight tear test (DWTT) on high-toughness pipeline steels. Three kinds of steels were fabricated by varying the alloying elements, and their microstructures were varied by the rolling conditions. The pressed-notch (PN) or chevron-notch (CN) DWTT and Charpy V-notch (CVN) impact tests were conducted on the rolled steel specimens, and the results were discussed in comparison with the data obtained from CVN tests of prestrained specimens. In the hammer-impacted region of the DWTT specimens, abnormal inverse fracture having a cleavage fracture mode appeared, and the inverse fracture area correlated well with the upper-shelf energy (USE) obtained from the CVN test and with the grain size. The steel specimens having a higher USE or having coarse polygonal ferrite tended to have a larger inverse fracture area than those having a lower USE or having fine acicular ferrite. This was because steels having a higher impact absorption energy required higher energy for fracture initiation and propagation during the DWTT. These results were confirmed by the CVN data of prestrained steel specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth & Co., Ltd, London, 1988.

    Google Scholar 

  2. R. Denys: Pipeline Technology, Proc. 3rd Int. Pipeline Technology Conf., Elsevier, Brugge, Belgium, 2000, vol. I & II.

    Google Scholar 

  3. J.R. Ellwood: Proc. 2000 Int. Pipeline Conf., ASME, Calgary, AB, Canada, 2000.

    Google Scholar 

  4. X.W. Zhao, J.H. Luo, M. Zheng, M.X. Lu, and H.L. Li: Met. Mater. Int., 2002, vol. 8, pp. 479–85.

    CAS  Google Scholar 

  5. J.S. Chung and S. Prinsenberg: Proc. 13th Int. Offshore and Polar Engineering Conf. and The ISOPE Symp. on High-Performance Materials in Offshore Industry (HMOI), Honolulu, HI, 2003.

  6. N. Iwasaki, T. Yamaguchi, and T. Taira: Mech. Work Steel Process, 1975, vol. 13, pp. 294–314.

    CAS  Google Scholar 

  7. H. Kashimura, M. Ogasawara, and H. Mimura: Metal Prog., 1976, Nov., pp. 58–62.

  8. N. Nozaki, K. Bessyo, Y. Sumitomo, I. Takeuchi, and A. Yamashita: Sumitomo Search, 1981, vol. 26, pp. 76–90.

    Google Scholar 

  9. K. Seifert: Mater. Testing, 1984, vol. 26, pp. 277–80.

    Google Scholar 

  10. L. Pussegoda, L. Malik, A. Dinovitzer, B.A. Graville, and A.B. Rothwell: in Proc. 2000 Int. Pipeline Conf., J.R. Ellwood, ASME, New York, NY, 2000, vol. 1, pp. 239–45.

    Google Scholar 

  11. G. Mannucci and D. Harris: “Fracture Properties of API X100 Gas Pipeline Steels,” Final Report, European Commission, Brussels, Belgium, 2002.

    Google Scholar 

  12. B. Hwang, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo, and C.S. Woo: Mater. Sci. Eng. A, 2003, vol. A368, pp. 18–27.

    Google Scholar 

  13. S. Lee, B. Hwang, Y.M. Kim, N.J. Kim, and J.Y. Yoo: Proc. 17th Conf. on Mechanical Behaviors of Materials, J.H. Hong and Y.S. Kim, eds., Pohang, Korea, 2003, pp. 40–49.

  14. B. Hwang, Y.M. Kim, S. Lee, N.J. Kim, and S.S. Ahn: Metall. Mater. Trans. A, in press.

  15. API Recommended Practice 5L3, API, Washington, D.C., 1996.

  16. E. Heier: “Drop Weight Tear Testing of High Toughness Pipeline Material,” Technical Report, Det Norske Veritas, Norway, 2003.

    Google Scholar 

  17. G.M. McClure, A.R. Duffy, and R.J. Eiber: J. Eng. Industry, 1965, vol. 4, pp. 265–78.

    Google Scholar 

  18. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore and Polar Engineering Conf., J.S. Chung and S. Prinsenberg, eds., Honolulu, HI, 2003, pp. 10–18.

  19. A.K. De, J.G. Speer, and D.K. Matlock: Adv. Mater. Process, 2003, vol. 161, pp. 27–30.

    CAS  Google Scholar 

  20. ASTM Standard E23-02, ASTM, Philadelphia, PA, 2002.

  21. W. Oldfield: ASTM Standardizations News, 1975, pp. 24–29.

  22. J.H. Hollomon and J.D. Lubahn: Phys. Rev., 1946, vol. 70, p. 775

    Article  CAS  Google Scholar 

  23. S.K. Kim: Ph.D. Dissertation, POSTECH, Pohang, Korea, 2002.

    Google Scholar 

  24. H.W. Swift: Met. Ind., 1940, vol. 56, pp. 127–30

    CAS  Google Scholar 

  25. Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, vol. 1.

  26. T. Hayashi, F. Kawabata, and K. Amano: Conf. Proc. from Materials Solution ’97 on Accelerated Cooling/Direct Quenching of Steels, R. Asfahani, ed., ASM INTERNATIONAL, Materials Park, OH, 1997, pp. 93–99.

    Google Scholar 

  27. G. Krauss and S.W. Thompson: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 937–45.

    CAS  Google Scholar 

  28. N.J. Kim, A.J. Yang, and G. Thomas: Metall. Trans. A, 1985, vol. 16A, pp. 471–74.

    CAS  Google Scholar 

  29. J.Y. Yoo and J.S. Woo: Proc. Int. Pipe Dreamer’s Conf., M. Toyoda and R. Denys, eds., Scientific Surveys, Ltd., Yokohama, Japan, 2002, pp. 441–56.

    Google Scholar 

  30. S. Okaguchi, H. Makino, M. Hamada, A. Yamamoto, T. Ikeda, I. Takeuchi, D.P. Fairchild, M.L. Macia, S.D. Papka, J.H. Stevens, C.W. Perersen, J.Y. Koo, N.V. Bangaru, and M.J. Luton: Proc. 13th Int. Offshore and Polar Engineering Conf., J.S. Chung and S. Prinsenberg, eds., Honolulu, HI, 2003, pp. 36–42.

  31. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22A, pp. 139–49.

    CAS  Google Scholar 

  32. S. Kim, S. Lee, Y.R. Im, H.C. Lee, S.J. Kim, and J.H. Hong: J. Kor. Inst. Met. Mater., 2002, vol. 42, pp. 939–48.

    Google Scholar 

  33. W. Späth: Impact Testing of Materials, Gordon and Breach, New York, NY, 1961, ch. IX.

    Google Scholar 

  34. L.N. Pussegoda, L. Malik, and W.R. Tyson: Can. Metall. Q., 1997, vol. 36, pp. 39–47.

    Article  CAS  Google Scholar 

  35. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, London, 1988.

    Google Scholar 

  36. S.D. Papka, J.H. Stevens, M.L. Macia, D.P. Fairchild, and C.W. Petersen: Int. J. Offshore and Polar Eng., 2004, vol. 14, pp. 42–51.

    Google Scholar 

  37. T.L. Anderson: Fracture Mechanics—Fundamentals and Applications, CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  38. P.E. O’Donoghue, M.F. Kanninen, C.P. Leung, G. Demofonti, and S. Venzi: Int. J. Pressure Vessel Piping, 1997, vol. 70, pp. 11–25.

    Article  CAS  Google Scholar 

  39. C.G. Lee, S.-J. Kim, B.-H. Song, and S. Lee: Met. Mater. Int., 2002, vol. 8, pp. 435–41.

    Article  CAS  Google Scholar 

  40. C.-M. Kim, W.-S. Kim, and Y.-T. Kho: Met. Mater. Int., 2002, vol. 8, pp. 197–202.

    CAS  Google Scholar 

  41. D.J. Horsley: Eng. Fract. Mech., 2003, vol. 70, pp. 547–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, B., Kim, Y.G., Lee, S. et al. Effects of microstructure on inverse fracture occurring during drop-weight tear testing of high-toughness X70 pipeline steels. Metall Mater Trans A 36, 371–387 (2005). https://doi.org/10.1007/s11661-005-0309-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0309-7

Keywords

Navigation