Skip to main content
Log in

Determination of thermo-electrical properties in Sn based alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The variation of thermal conductivity of solid phase versus temperature for Sn-21 wt.% Bi, Sn-25 wt.% In and Sn-35 wt.% In-26 wt.% Bi alloys were measured with a radial heat flow apparatus. From the graphs of thermal conductivity versus temperature, the thermal conductivity of the solid phases at their melting temperatures and the thermal temperature coefficients for the same alloys were obtained. The ratios of thermal conductivity of liquid phase to solid phase for the same materials were measured with a Bridgman type directional solidification apparatus. The variations of electrical conductivity of solid phases versus temperature for the same alloys were determined from the Wiedemann-Franz law by using the measured values of thermal conductivity. From the graphs of electrical conductivity versus temperature, the electrical temperature coefficients for the same alloys were also determined. According to present experimental results it can be concluded that the thermal and electrical conductivity of Sn based alloys depend on the thermal and electrical conductivity of the alloying elements. If the thermal and electrical conductivity of the alloying elements are lower than the thermal conductivity of Sn, the thermal conductivity of Sn based alloys decreases, whereas, otherwise, it increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, Thermal Conductivity Metallic Elements and Alloys, Vol 1, p. 17a, Plenum, New York (1970).

    Google Scholar 

  2. H. L. Callendar and J. T. Nicolson, Brt. Assoc. Adv. Sci., Rept. Ann. Meeting. 22, 418 (1897).

    Google Scholar 

  3. C. Niven, Proc. Roy. Soc. A76, 34 (1905).

    Google Scholar 

  4. R. W. Powell, Proc. Phys. Soc. 51, 407 (1939).

    Article  CAS  Google Scholar 

  5. M. F. Angel, Phys. Rev. 33, 411 (1911).

    Google Scholar 

  6. D. L. McElroy and J. P. Moore, Academic Press, Vol. I, p.185, London (1969).

  7. M. Gündüz and J. D. Hunt, Acta. mater. 33, 1651 (1985).

    Article  Google Scholar 

  8. N. Mara ll and J. D. Hunt, Acta mater. 44, 1085 (1996).

    Article  Google Scholar 

  9. M. Erol, K. Keşlioğlu, R. Şahingöz, and N. Maraşlı, Met. Mater. Int. 11, 421 (2005).

    Article  CAS  Google Scholar 

  10. B. Saatçi, N. Maraşlı, and M. Gündüz, Therm. Acta. 454, 128 (2007).

    Article  Google Scholar 

  11. N. Maraşlı, S. Akbulut, Y. Ocak, K. Keşlioğlu, U. Böyük, H. Kaya, and E. Çadırlı, J. Phys. Codens. Mat. 19, 506102 (2007).

    Article  Google Scholar 

  12. Y. Terada, K. Ohkubo, T. Mohri, and T. Suzuki, J. Alloy. Compd. 285, 233 (1999).

    Article  CAS  Google Scholar 

  13. C. Kittel, Introduction to Solid State Physics, 6th ed., p. 150–153, John Wiley and Sons, New York (1965).

    Google Scholar 

  14. J. Sigelko, S. Choi, K. N. Subramanian, J. P. Lucas, and T. R. Bieler, J. Electron Mater. 28, 1184 (1999).

    Article  CAS  Google Scholar 

  15. J. Liang, N. Gollhardt, P. S. Lee, S. A. Schroeder, and W. L. Morris, Fatigue. Fract. Eng. M. 19, 1401 (1996).

    Article  CAS  Google Scholar 

  16. P. T. Vianco, J. A. Rejent, and A. C. Kilgo, J. Electron. Mater. 33, 1373 (2004).

    Article  Google Scholar 

  17. M. Kerr and N. Chawla, Acta. mater. 52, 4527 (2004).

    Article  CAS  Google Scholar 

  18. J. Liang, S. Downes, N. Dariavach, D. Shangguan, and S. M. Heinrich, J. Electron. Mater. 33, 1507 (2004).

    Article  CAS  Google Scholar 

  19. J. Liang, N. Dariavach, G. Barr, and Z. Fang, J. Electron. Mater. 35, 372 (2006).

    Article  CAS  Google Scholar 

  20. M. L. Huang, L. Wang, and C. M. L. Wu, J. Mater. Res. 17, 2897 (2002).

    Article  CAS  Google Scholar 

  21. M. Amagai, M. Watanabe, M. Omiya, K. Kishimoto and T. Shibuya, Microelectron. Reliab. 42, 951 (2002).

    Article  Google Scholar 

  22. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity Metallic Elements and Alloys, Vol. 1, p. 149, Plenum, New York (1970).

    Google Scholar 

  23. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity Metallic Elements and Alloys, Vol. 1, p. 408, Plenum, New York (1970).

    Google Scholar 

  24. Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, Thermal Conductivity Metallic Elements and Alloys, Vol. 1, p. 39, Plenum, New York (1970).

    Google Scholar 

  25. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, p. 204, Van Nostrnad Reinhold Co. Ltd., UK (1991).

    Google Scholar 

  26. D. G. McCartney, Ph. D. Thesis, p.85–175, Oxford University, UK (1981).

  27. Resistivities of Metallic Elements, http://www.kayelaby.npl.co.uk/general_physics.

  28. S. Akbulut, Y. Ocak, K. Keşlioğlu, and N. Maraşlı J. Phys. Chem. Solids. 70, 72 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Maraşlı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksöz, S., Ocak, Y., Keşlioğlu, K. et al. Determination of thermo-electrical properties in Sn based alloys. Met. Mater. Int. 16, 507–515 (2010). https://doi.org/10.1007/s12540-010-0624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0624-4

Keywords

Navigation