Skip to main content
Log in

Preparation of ZrO2 dielectric layers by subsequent oxidation after Zr film deposition with negative substrate bias voltage

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

ZrO2 dielectric layers were prepared by a two-step process, a deposition of pure Zr film with and without a negative substrate bias voltage and a subsequent oxidation of the Zr films. We focused on the effect of the negative substrate bias voltage on the Zr film deposition and the subsequent oxidation of the Zr films. As a result, the Zr film deposited at the substrate bias voltage of −50 V (Vs = −50 V) was found to have a high intensity peak of Zr (100) and a uniform and smooth surface. From the capacitance-voltage and current-voltage measurements of the ZrO2 films, a high dielectric constant of 21 and the equivalent oxide thickness (EOT) of 2.6 nm were obtained on the oxidation layer of the Zr film deposited at Vs = −50 V. On the other hand, a low dielectric constant of 15 and the EOT of 3.6 nm was obtained on that of the Zr film deposited at Vs = 0 V. The leakage current density of the ZrO2 film (Vs = −50 V) was 5.69×10−4 A/cm2, and this value was much lower than the 1.21×10−4 A/cm2 for the ZrO2 film (Vs = 0 V). It was found that the two-step process by subsequent oxidation after film deposition using a negative substrate bias voltage is useful for obtaining high-quality dielectric layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Wilk and R. M. Wallace, Appl. Phys. Lett. 74, 2854 (1999).

    Article  CAS  Google Scholar 

  2. B. H. Lee, L. Kang, R. Nieh, W. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).

    Article  CAS  Google Scholar 

  3. H. Fukuda, M. Yasuda, and T. Iwabuchi, Appl. Phys. Lett. 61, 693 (1992).

    Article  CAS  Google Scholar 

  4. B. Kralik, E. K. Chang, and S. G. Louie, Phys. Rev. B 57, 7027 (1998).

    Article  CAS  Google Scholar 

  5. J. H. Hong, W. J. Choi, and J. M. Myoung, Microelectron. Eng. 70, 35 (2003).

    Article  CAS  Google Scholar 

  6. P. V. Aleskandrova, V. K. Gueroguiev, Tz. E. Ivanov, and J. B. Koprinarova, Eur. Phys. J. B 52, 453 (2006).

    Article  CAS  Google Scholar 

  7. M. Houssa, M. Tuominen, M. Naili, V. Afanas’ev, A. Stesmans, S. Haukka, and M. M. Heyns, J. Appl. Phys. 87, 8615 (2000).

    Article  CAS  Google Scholar 

  8. S. Abermann, J. Efavi, G. Sjoblom, M. Lemme, J. Olsson, and E. Bertagnolli, Microelectron. Reliab. 47, 536 (2007).

    Article  CAS  Google Scholar 

  9. J.-W. Lim, J. Ijima, Y. Zhu, J. H. Yoo, G.-S, Choi, K. Mimura, and M. Isshiki, Thin Solid Films 516, 4040 (2008).

    CAS  Google Scholar 

  10. V Kaushik, M. Claes, A. Delabie, S. V. Elshocht, O. Richard, T. Conard, E. Rohr, T. Witters, M. Caymax, S. D. Gendt, and M. Heyns, Microelectron. Reliab. 45, 798 (2005).

    Article  CAS  Google Scholar 

  11. J.-W. Lim, Y. Ishikawa, K. Miyake, M. Yamashita, and M. Isshiki, Mater. Trans. 43, 1403 (2002).

    Article  CAS  Google Scholar 

  12. J.-W. Lim, J. W. Bae, K. Mimura, and M. Isshiki, Mater. Chem. Phys. 96, 301 (2006).

    Article  CAS  Google Scholar 

  13. J.-W. Lim, G.-S, Choi, Y. Zhu, K. Mimura, and M. Isshiki, Met. Mater. Int. 14, 381 (2008).

    Article  CAS  Google Scholar 

  14. J.-W. Lim, K. Mimura, and M. Isshiki, Jpn. J. Appl. Phys. 43, 8267 (2004).

    Article  CAS  Google Scholar 

  15. K. H. Kim, J. M. Yang, C. W. Ahn, H. S. Seo, I.-S. Kang, and W.-J. Hwang, J. Kor. Inst. Met. & Mater. 46, 458 (2008).

    CAS  Google Scholar 

  16. A. Zenkevich, Y. Lebedinskii, G. Scarel, M. Fanciulli, A. Baturin, and N. Lubovin, Microelectron. Reliab. 47, 657 (2007).

    Article  CAS  Google Scholar 

  17. N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa, and A. Toriumi, Jpn. J. Appl. Phys. 42, L138 (2003).

    Article  CAS  Google Scholar 

  18. H. S. Choi, K. S. Seol, D. Y. Kim, J. S. Kwak, C.-S. Son, and I.-H. Choi, Vacuum 80, 310 (2005).

    Article  CAS  Google Scholar 

  19. Y. M. Sun, J. Lozano, H. Ho, H. J. Park, S. Veldman, and J. M. White, Appl. Surf. Sci. 161, 115 (2000).

    Article  CAS  Google Scholar 

  20. N. L. Zhang, Z. T. Song, Q. Wan, Q. W. Shen, and C. L. Lin, Appl. Surf. Sci. 202, 126 (2002).

    Article  CAS  Google Scholar 

  21. J. Chastain, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota, (1992).

    Google Scholar 

  22. B. K. Park, J. Park, M. Cho, C. S. Hwang, K. Oh, Y. Han, and D. Y. Yang, Appl. Phys. Lett. 80, 2368 (2002).

    Article  CAS  Google Scholar 

  23. M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. 76, 436 (2000).

    Article  CAS  Google Scholar 

  24. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Won Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, J.W., Lim, JW., Kim, S.J. et al. Preparation of ZrO2 dielectric layers by subsequent oxidation after Zr film deposition with negative substrate bias voltage. Met. Mater. Int. 16, 447–452 (2010). https://doi.org/10.1007/s12540-010-0615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0615-5

Keywords

Navigation