Skip to main content
Log in

BDM: An Assessment Metric for Protein Complex Structure Models Based on Distance Difference Matrix

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Protein complex structure prediction is an important problem in computational biology. While significant progress has been made for protein monomers, accurate evaluation of protein complexes remains challenging. Existing assessment methods in CASP, lack dedicated metrics for evaluating complexes. DockQ, a widely used metric, has some limitations. In this study, we propose a novel metric called BDM (Based on Distance difference Matrix) for assessing protein complex prediction structures. Our approach utilizes a distance difference matrix derived from comparing real and predicted protein structures, establishing a linear correlation with Root Mean Square Deviation (RMSD). BDM overcomes limitations associated with receptor-ligand differentiation and eliminates the requirement for structure alignment, making it a more effective and efficient metric. Evaluation of BDM using CASP14 and CASP15 test sets demonstrates superior performance compared to the official CASP scoring. BDM provides accurate and reasonable assessments of predicted protein complexes, wide adoption of BDM has the potential to advance protein complex structure prediction and facilitate related researches across scientific domains. Code is available at http://mialab.ruc.edu.cn/BDMServer/.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The source code and server are available at http://mialab.ruc.edu.cn/BDMServer/. The datasets can be found on the websites mentioned in the “Datasets” section of the main text.

References

  1. You X, Zhang X, Cheng J et al (2023) In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature 616:199–206. https://doi.org/10.1038/s41586-023-05831-0

    Article  CAS  PubMed  Google Scholar 

  2. Altmann M, Altmann S, Rodriguez PA et al (2020) Extensive signal integration by the phytohormone protein network. Nature 583:271–276. https://doi.org/10.1038/s41586-020-2460-0

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, Cao X (2023) RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 33:97–115. https://doi.org/10.1038/s41422-022-00752-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pihl R, Zheng Q, David Y (2023) Nature-inspired protein ligation and its applications. Nat Rev Chem 7:234–255. https://doi.org/10.1038/s41570-023-00468-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berggård T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7:2833–2842. https://doi.org/10.1002/pmic.200700131

    Article  CAS  PubMed  Google Scholar 

  6. Lee MS, Dennis C, Naqvi I et al (2023) Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer. Nature 616:339–347. https://doi.org/10.1038/s41586-023-05891-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mosca R, Ceol A, Stein A et al (2014) 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 42:D374–D379. https://doi.org/10.1093/nar/gkt887

    Article  CAS  PubMed  Google Scholar 

  8. Vyas VK, Ukawala RD, Ghate M et al (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74:1. https://doi.org/10.4103/0250-474X.102537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villegas-Morcillo A, Sanchez V, Gomez AM (2021) FoldHSphere: deep hyperspherical embeddings for protein fold recognition. BMC Bioinform 22:1–21. https://doi.org/10.1186/s12859-021-04419-7

    Article  CAS  Google Scholar 

  10. Yan Y, Tao H, He J et al (2020) The HDOCK server for integrated protein–protein docking. Nat Protoc 15:1829–1852. https://doi.org/10.1038/s41596-020-0312-x

    Article  CAS  Google Scholar 

  11. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein–protein docking. Nucleic Acids Res 36:W233–W238. https://doi.org/10.1093/nar/gkn216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao M, Nakajima An D, Parks JM et al (2022) AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat Commun 13:1744. https://doi.org/10.1038/s41467-022-29394-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gainza P, Wehrle S, Van Hall-Beauvais A et al (2023) De novo design of protein interactions with learned surface fingerprints. Nature 617:176–184. https://doi.org/10.1038/s41586-023-05993-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr Sect A 32:922–923. https://doi.org/10.1107/S0567739476001873

    Article  Google Scholar 

  15. Li SC (2013) The difficulty of protein structure alignment under the RMSD. Algorithms Mol Biol 8:1–9. https://doi.org/10.1186/1748-7188-8-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coutsias EA, Wester MJ (2019) RMSD and symmetry. J Comput Chem 40:1496–1508. https://doi.org/10.1002/jcc.25802

    Article  CAS  PubMed  Google Scholar 

  17. Zemla A, Venclovas Č, Moult J et al (2001) Processing and evaluation of predictions in CASP4. Proteins 45:13–21. https://doi.org/10.1002/prot.10052

    Article  CAS  Google Scholar 

  18. Best RB, Hummer G, Eaton WA (2013) Native contacts determine protein folding mechanisms in atomistic simulations. Proc Natl Acad Sci U S A 110:17874–17879. https://doi.org/10.1073/pnas.1311599110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Méndez R, Leplae R, De Maria L et al (2003) Assessment of blind predictions of protein–protein interactions: current status of docking methods. Proteins 52:51–67. https://doi.org/10.1002/prot.10393

    Article  CAS  PubMed  Google Scholar 

  20. Basu S, Wallner B (2016) DockQ: a quality measure for protein–protein docking models. PLoS One 11:e0161879. https://doi.org/10.1371/journal.pone.0161879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lensink MF, Méndez R, Wodak SJ (2007) Docking and scoring protein complexes: CAPRI 3rd edition. Proteins 69:704–718. https://doi.org/10.1002/prot.21804

    Article  CAS  PubMed  Google Scholar 

  22. Moult J, Fidelis K, Kryshtafovych A et al (2007) Critical assessment of methods of protein structure prediction-Round VII. Proteins 69:3–9. https://doi.org/10.1002/prot.21767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones S, Thornton JM (1997) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272:121–132. https://doi.org/10.1016/j.jmps.2020.103968

    Article  CAS  PubMed  Google Scholar 

  24. Kryshtafovych A, Schwede T, Topf M et al (2021) Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins 89:1607–1617. https://doi.org/10.1002/prot.26237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ozden B, Kryshtafovych A, Karaca E (2021) Assessment of the CASP14 assembly predictions. Proteins 89:1787–1799. https://doi.org/10.1002/prot.26199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Bleser P, Hooghe B, Vlieghe D et al (2007) A distance difference matrix approach to identifying transcription factors that regulate differential gene expression. Genome Biol 8:1–13. https://doi.org/10.1186/gb-2007-8-5-r83

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable suggestions. This research was supported by Public Computing Cloud and School of Interdisciplinary Studies, Renmin University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqi Gong.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 4172 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Wang, W., Zhao, R. et al. BDM: An Assessment Metric for Protein Complex Structure Models Based on Distance Difference Matrix. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-024-00622-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-024-00622-1

Keywords

Navigation