Skip to main content

Advertisement

Log in

Singular Value Decomposition-Driven Non-negative Matrix Factorization with Application to Identify the Association Patterns of Sarcoma Recurrence

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Sarcomas are malignant tumors from mesenchymal tissue and are characterized by their complexity and diversity. The high recurrence rate making it important to understand the mechanisms behind their recurrence and to develop personalized treatments and drugs. However, previous studies on the association patterns of multi-modal data on sarcoma recurrence have overlooked the fact that genes do not act independently, but rather function within signaling pathways. Therefore, this study collected 290 whole solid images, 869 gene and 1387 pathway data of over 260 sarcoma samples from UCSC and TCGA to identify the association patterns of gene–pathway–cell related to sarcoma recurrences. Meanwhile, considering that most multi-modal data fusion methods based on the joint non-negative matrix factorization (NMF) model led to poor experimental repeatability due to random initialization of factorization parameters, the study proposed the singular value decomposition (SVD)-driven joint NMF model by applying the SVD method to calculate initialized weight and coefficient matrices to achieve the reproducibility of the results. The results of the experimental comparison indicated that the SVD algorithm enhances the performance of the joint NMF algorithm. Furthermore, the representative module indicated a significant relationship between genes in pathways and image features. Multi-level analysis provided valuable insights into the connections between biological processes, cellular features, and sarcoma recurrence. In addition, potential biomarkers were uncovered, while various mechanisms of sarcoma recurrence were identified from an imaging genetic perspective. Overall, the SVD–NMF model affords a novel perspective on combining multi-omics data to explore the association related to sarcoma recurrence.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in the Cancer Genome Atlas (TCGA) website (https://www.cancer.gov/) and the University of California Santa Cruz (UCSC) website (https://genome.ucsc.edu/).

References

  1. Daw N, Chou A, Jaffe N et al (2015) Recurrent osteosarcoma with a single pulmonary metastasis: a multi-institutional review. Br J Cancer 112(2):278–282. https://doi.org/10.1038/bjc.2014.585

    Article  CAS  PubMed  Google Scholar 

  2. Burningham Z, Hashibe M, Spector L et al (2012) The epidemiology of sarcoma. Clin Sarcoma Res 2(1):1–16. https://doi.org/10.1186/2045-3329-2-14

    Article  Google Scholar 

  3. Liang Y, Guo T, Hong D et al (2020) Time to local recurrence as a predictor of survival in patients with soft tissue sarcoma of the extremity and abdominothoracic wall. Front Oncol 10:599097. https://doi.org/10.3389/fonc.2020.599097

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klimov S, Miligy IM, Gertych A et al (2019) A whole slide image-based machine learning approach to predict ductal carcinoma in situ (DCIS) recurrence risk. Breast Cancer Res 21:1–19. https://doi.org/10.1186/s13058-019-1165-5

    Article  CAS  Google Scholar 

  5. Yang F, Zhang Y, Ren H et al (2019) Ischemia reperfusion injury promotes recurrence of hepatocellular carcinoma in fatty liver via ALOX12-12HETE-GPR31 signaling axis. J Exp Clin Canc Res 38(1):1–14. https://doi.org/10.1186/s13046-019-1480-9

    Article  CAS  Google Scholar 

  6. Niu C, Wu D, Li A J et al (2021) Identification of prognostic signature based on the copy number variation (CNV) and expression in acute myeloid leukemia. Am J Transl Res 13(12):13683–13696. https://doi.org/10.21203/rs.3.rs-64413/v2

  7. Steele CD, Tarabichi M, Oukrif D et al (2019) Undifferentiated sarcomas develop through distinct evolutionary pathways. Cancer Cell 35(3):441–456. https://doi.org/10.1016/j.ccell.2019.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peng Y, Chu Y, Chen Z et al (2020) Combining texture features of whole slide images improves prognostic prediction of recurrence-free survival for cutaneous melanoma patients. World J Surg Oncol 18(1):1–8. https://doi.org/10.1186/s12957-020-01909-5

    Article  Google Scholar 

  9. Zheng H, Momeni A, Cedoz PL et al (2020) Whole slide images reflect DNA methylation patterns of human tumors. NPJ Genom 5(1):11. https://doi.org/10.1038/s41525-020-0120-9

    Article  CAS  Google Scholar 

  10. Deng J, Zeng W, Shi Y et al (2020) Fusion of FDG-PET image and clinical features for prediction of lung metastasis in soft tissue sarcomas. Comput Math Methods Med 1:1–11. https://doi.org/10.1155/2020/8153295

    Article  ADS  Google Scholar 

  11. Deng J, Zeng W, Luo S et al (2021) Integrating multiple genomic imaging data for the study of lung metastasis in sarcomas using multi-dimensional constrained joint non-negative matrix factorization. Inf Sci 576:24–36. https://doi.org/10.1016/j.ins.2021.06.058

    Article  MathSciNet  Google Scholar 

  12. Ma Z, Chen B, Zhang Y et al (2022) Integration of RNA molecules data with prior-knowledge driven Joint Deep Semi-Negative Matrix Factorization for heart failure study. Front Genet 13:967363. https://doi.org/10.3389/fgene.2022.967363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei K, Kong W, Wang S (2022) Integration of imaging genomics data for the study of Alzheimer’s disease using joint-connectivity-based sparse nonnegative matrix factorization. J Mol Neurosci 72(2):255–272. https://doi.org/10.1007/s12031-021-01888-6

    Article  CAS  PubMed  Google Scholar 

  14. Ning S, Xie J, Mo J et al (2023) Imaging genetic association analysis of triple-negative breast cancer based on the integration of prior sample information. Front Genet 14:1090847. https://doi.org/10.3389/fgene.2023.1090847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang H, Li A, Xu H et al (2018) Sparsity-constrained deep nonnegative matrix factorization for hyperspectral unmixing. IEEE Geosci 15(7):1105–1109. https://doi.org/10.1109/LGRS.2018.2823425

    Article  Google Scholar 

  16. Deng J, Zeng W, Kong W et al (2019) Multi-constrained joint non-negative matrix factorization with application to imaging genomic study of lung metastasis in soft tissue sarcomas. IEEE Trans Biomed Eng 67(7):2110–2118. https://doi.org/10.1109/TBME.2019.2954989

    Article  PubMed  Google Scholar 

  17. Yu G, Wang LG, Han Y et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sato N, Tamada Y, Yu G et al (2022) CBNplot: Bayesian network plots for enrichment analysis. Bioinformatics 38(10):2959–2960. https://doi.org/10.1093/bioinformatics/btac175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hawkins AG, Julian CM, Konzen S et al (2019) Microenvironmental factors drive tenascin C and src cooperation to promote invadopodia formation in Ewing sarcoma. Neoplasia 21(10):1063–1072. https://doi.org/10.1016/j.neo.2019.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chalise P, Fridley BL (2017) Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm. PLoS ONE 12(5):e0176278. https://doi.org/10.1371/journal.pone.0176278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flørenes VA, Mælandsmo GM, Forus A (1994) MDM2 gene amplification and transcript levels in human sarcomas: relationship to TP53 gene status. J Natl Cancer Inst 86(17):1297–1302. https://doi.org/10.1093/jnci/86.17.1297

    Article  PubMed  Google Scholar 

  22. Kommoss FKF, Chang KTE, Stichel D et al (2020) Endometrial stromal sarcomas with BCOR-rearrangement harbor MDM2 amplifications. J Pathol 6(3):178–184. https://doi.org/10.1002/cjp2.165

    Article  CAS  Google Scholar 

  23. Cooley C, Su L (2021) HDAC2 links ubiquitination to tumor suppression in synovial sarcoma. Mol Cell Oncol 8(3):1914291. https://doi.org/10.1080/23723556.2021.1914291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang C, Xiong N, Liu M et al (2023) Manganese immunotherapy for treating osteosarcoma: glycosylating 1V209 anchored MnO2 nanosheets prompt pro-inflammatory macrophage polarization. Nano Today 48:101670. https://doi.org/10.1016/j.nantod.2022.101670

    Article  CAS  Google Scholar 

  25. Li D, Yan M, Sun F et al (2021) miR-498 inhibits autophagy and M2-like polarization of tumor-associated macrophages in esophageal cancer via MDM2/ATF3. Epigenomics 13(13):1013–1030. https://doi.org/10.2217/epi-2020-0341

    Article  CAS  PubMed  Google Scholar 

  26. Hedrick CC, Malanchi I (2022) Neutrophils in cancer: heterogeneous and multifaceted. Nat Rev Immunol 22(3):173–187. https://doi.org/10.1038/s41577-021-00571-6

    Article  CAS  PubMed  Google Scholar 

  27. Yalcin F, Dzaye O (2020) Xia S (2020) Tenascin-C function in glioma: immunomodulation and beyond. Adv Exp Med Biol 1272:149–172. https://doi.org/10.1007/978-3-030-48457-6_9

    Article  CAS  PubMed  Google Scholar 

  28. El-Karef A, Yoshida T, Gabazza EC et al (2007) Deficiency of tenascin-C attenuates liver fibrosis in immune-mediated chronic hepatitis in mice. J Pathol 211(1):86–94. https://doi.org/10.1002/path.2099

    Article  CAS  PubMed  Google Scholar 

  29. Kato H, Duarte S, Miller MG et al (2019) Overproduction of tenascin-C driven by lipid accumulation in the liver aggravates hepatic ischemia/reperfusion injury in steatotic mice. Liver Transplant 25(2):288–301. https://doi.org/10.1002/lt.25365

    Article  Google Scholar 

  30. Radanliev P, De Roure D (2022) Advancing the cybersecurity of the healthcare system with self-optimising and self-adaptative artificial intelligence (part 2). Health Technol 12(5):923–929. https://doi.org/10.1007/s12553-022-00691-6

    Article  Google Scholar 

  31. Radanliev P, De Roure D (2023) New and emerging forms of data and technologies: literature and biblio metric review. Multimed Tools Appl 82(2):2887–2911. https://doi.org/10.1007/s11042-022-13451-5

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by the Scientific and Technological Planning Project of Guangzhou City (No.202102020673, 2023A04J0316), the Young Scholar Project of Pazhou Lab (No.PZL2021KF0021), the Natural Science Foundation of Guangdong Province (No.2020A1515010813, 2414050002707), and the Young Innovation Talent Projects for Guangdong Universities (No. 2023KQNCX009).

Author information

Authors and Affiliations

Authors

Contributions

J. Deng: Conceptualization, methodology, data curation, writing–original draft preparation, writing–reviewing and editing, funding acquisition. K. Li: Software, writing–original draft preparation, visualization. W. Luo: Conceptualization, validation, writing–reviewing and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Wei Luo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Li, K. & Luo, W. Singular Value Decomposition-Driven Non-negative Matrix Factorization with Application to Identify the Association Patterns of Sarcoma Recurrence. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-024-00606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-024-00606-1

Keywords

Navigation