Skip to main content

Advertisement

Log in

Predicting miRNA–Disease Associations by Combining Graph and Hypergraph Convolutional Network

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA–disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA–disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA–disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA–disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The code of the proposed method and the datasets are available at https://github.com/LiangXujun/CGHCN.

References

  1. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S et al (2019) An overview of micrornas: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234:5451–5465. https://doi.org/10.1002/jcp.27486

    Article  CAS  PubMed  Google Scholar 

  2. Paul P, Chakraborty A, Sarkar D et al (2018) Interplay between mirnas and human diseases. J Cell Physiol 233:2007–2018. https://doi.org/10.1002/jcp.25854

    Article  CAS  PubMed  Google Scholar 

  3. Zhou S-S, Jin J-P, Wang J-Q et al (2018) mirnas in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39:1073–1084. https://doi.org/10.1038/aps.2018.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou S-S, Jin J-P, Wang J-Q et al (2014) Micrornas in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469. https://doi.org/10.1016/j.molmed.2014.06.005

    Article  CAS  Google Scholar 

  5. Zhou S-S, Jin J-P, Wang J-Q et al (2017) Mirna biogenesis and regulation of diseases: an overview. Methods Mol Biol 1509:1–10. https://doi.org/10.1007/978-1-4939-6524-3_1

    Article  CAS  Google Scholar 

  6. Huang Z, Shi J, Gao Y et al (2019) Hmdd v3.0: a database for experimentally supported human microrna-disease associations. Nucleic Acids Res 47:1013–1017. https://doi.org/10.1093/nar/gky1010

    Article  CAS  Google Scholar 

  7. Zhou S-S, Jin J-P, Wang J-Q et al (2017) A survey on database resources for microrna-disease relationships. Brief Funct Genomics 16:146–151. https://doi.org/10.1093/bfgp/elw015

    Article  CAS  Google Scholar 

  8. Mahjoubin-Tehran M, Rezaei S, Jalili A et al (2021) A comprehensive review of online resources for microRNA–diseases associations: the state of the art. Briefings Bioinf 23(1):bbab381. https://doi.org/10.1093/bib/bbab381

    Article  Google Scholar 

  9. Jiang Q, Hao Y, Wang G et al (2010) Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 4(Suppl 1):S2. https://doi.org/10.1186/1752-0509-4-s1-s2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jiang Q, Hao Y, Wang G et al (2012) RWRMDA: predicting novel human microRNA–disease associations. Mol BioSyst 8(10):2792. https://doi.org/10.1039/c2mb25180a

    Article  CAS  Google Scholar 

  11. Xuan P, Han K, Guo Y et al (2015) Prediction of potential disease-associated microRNAs based on random walk. Bioinformatics 31(11):1805–1815. https://doi.org/10.1093/bioinformatics/btv039

    Article  CAS  PubMed  Google Scholar 

  12. Xuan P, Dong Y, Guo Y et al (2019) An improved random forest-based computational model for predicting novel miRNA-disease associations. BMC Bioinf 20(1):624. https://doi.org/10.1186/s12859-019-3290-7

    Article  Google Scholar 

  13. Jiang L, Ding Y, Tang J et al (2018) MDA-SKF: Similarity kernel fusion for accurately discovering miRNA-disease association. Front Genet 9:618. https://doi.org/10.3389/fgene.2018.00618

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Yin J, Qu J et al (2018) MDHGI: Matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLoS Comput Biol 14(8):1006418. https://doi.org/10.1371/journal.pcbi.1006418

    Article  CAS  Google Scholar 

  15. Chen X, Li T-H, Zhao Y et al (2020) Deep-belief network for predicting potential miRNA-disease associations. Briefings Bioinf 22(3):bbaa186. https://doi.org/10.1093/bib/bbaa186

    Article  Google Scholar 

  16. Xuan P, Dong Y, Guo Y et al (2018) Dual convolutional neural network based method for predicting disease-related miRNAs. Int J Mol Sci 19(12):3732. https://doi.org/10.3390/ijms19123732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peng W, Che Z, Dai W et al (2022) Predicting miRNA-disease associations from miRNA-gene-disease heterogeneous network with multi-relational graph convolutional network model. IEEE/ACM Trans Comput Biol Bioinform 20(6):3363–3375. https://doi.org/10.1109/TCBB.2022.3187739

    Article  Google Scholar 

  18. Wang C-C, Li T, Huang L et al (2022) Prediction of potential miRNA-disease associations based on stacked autoencoder. Briefings Bioinf 23(2):bbac021. https://doi.org/10.1093/bib/bbac021

    Article  Google Scholar 

  19. Li J, Zhang S, Liu T et al (2020) Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics 36(8):2538–2546. https://doi.org/10.1093/bioinformatics/btz965

    Article  CAS  PubMed  Google Scholar 

  20. Jin C, Shi Z, Lin K et al (2022) Predicting mirna-disease association based on neural inductive matrix completion with graph autoencoders and self-attention mechanism. Biomolecules 12(1):64. https://doi.org/10.3390/biom12010064

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li Z, Li J, Nie R et al (2021) A graph auto-encoder model for mirna-disease associations prediction. Briefings Bioinf 22(4):bbaa240. https://doi.org/10.1093/bib/bbaa240

    Article  Google Scholar 

  22. Li L, Wang Y-T, Ji C-M et al (2021) GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder. PLoS Comput Biol 17(12):1009655. https://doi.org/10.1371/journal.pcbi.1009655

    Article  CAS  Google Scholar 

  23. Ai N, Liang Y, Yuan H-L et al (2022) MHDMF: Prediction of miRNA–disease associations based on deep matrix factorization with multi-source graph convolutional network. Comput Biol Med 149:106069. https://doi.org/10.1016/j.compbiomed.2022.106069

    Article  CAS  PubMed  Google Scholar 

  24. Tang X, Luo J, Shen C et al (2021) Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction. Briefings Bioinf 22(6):bbab174. https://doi.org/10.1093/bib/bbab174

    Article  CAS  Google Scholar 

  25. Tang X, Luo J, Shen C et al (2006) Learning with hypergraphs: Clustering, classification, and embedding. In: NIPS. https://doi.org/10.7551/mitpress/7503.003.0205

  26. Huang Z, Shi J, Gao Y et al (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453. https://doi.org/10.1016/0022-2836(70)90057-4

    Article  Google Scholar 

  27. Liang X, Li J, Fu Y et al (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):155–162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  Google Scholar 

  28. Liang X, Li J, Fu Y et al (2016) rDNAse: R package for generating various numerical representation schemes of DNA sequences. https://cran.r-project.org/web/packages/rDNAse/

  29. Wang D, Wang J, Lu M et al (2010) Inferring the human microrna functional similarity and functional network based on microrna-associated diseases. Bioinformatics 26(13):1644–1650. https://doi.org/10.1093/bioinformatics/btq241

    Article  CAS  PubMed  Google Scholar 

  30. Xuan P, Han K, Guo M et al (2013) Prediction of micrornas associated with human diseases based on weighted k most similar neighbors. PLoS One 8(8):e70204. https://doi.org/10.1371/journal.pone.0070204

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morris C, Ritzert M, Fey M et al (2019) Weisfeiler and leman go neural: Higher-order graph neural networks. arXiv:1810.02244. https://doi.org/10.48550/arXiv.1810.02244

  32. Mei J, Kwoh CK, Yang P et al (2013) Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2):238–245. https://doi.org/10.1186/s12859-019-3290-7

    Article  CAS  PubMed  Google Scholar 

  33. Ji S, Feng Y, Ji R et al (2020) Dual channel hypergraph collaborative filtering. In: SIGKDD. https://doi.org/10.1093/bioinformatics/bts670

    Article  Google Scholar 

  34. Ruan X, Jiang C, Lin P et al (2023) MSGCL: inferring miRNA–disease associations based on multi-view self-supervised graph structure contrastive learning. Briefings Bioinf 24(2):bbac623. https://doi.org/10.1093/bib/bbac623

    Article  CAS  Google Scholar 

  35. Zhang H, Fang J, Sun Y et al (2023) Predicting miRNA-disease associations via node-level attention graph auto-encoder. IEEE/ACM Trans Comput Biol Bioinform 20(2):1308–1318. https://doi.org/10.1109/tcbb.2022.3170843

    Article  CAS  PubMed  Google Scholar 

  36. Ning Q, Zhao Y, Gao J et al (2023) AMHMDA: attention aware multi-view similarity networks and hypergraph learning for miRNA–disease associations identification. Briefings Bioinf 24(2):bbad094. https://doi.org/10.1093/bib/bbad094

    Article  Google Scholar 

  37. Wang Y-T, Wu Q-W, Gao Z et al (2021) MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features. BMC Med Inform Decis Mak 21(Suppl 1):133. https://doi.org/10.1186/s12911-020-01320-w

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang C-C, Li T, Huang L et al (2015) The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PLoS One 10(3):e0118432. https://doi.org/10.1371/journal.pone.0118432

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang C-C, Li T, Huang L et al (2017) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907. https://doi.org/10.48550/arXiv.1609.02907

  40. Wang C-C, Li T, Huang L et al (2017) Inductive representation learning on large graphs. In: NIPS. https://doi.org/10.48550/arXiv.1706.02216

  41. Velickovic P, Cucurull G, Casanova A et al (2018) Graph attention networks. arXiv:1710.10903. https://doi.org/10.17863/CAM.48429

  42. Wang X, He X, Wang M et al (2019) Neural graph collaborative filtering. In: SIGIR. https://doi.org/10.1145/3331184.3331267

    Article  Google Scholar 

  43. Huang H-Y, Lin Y-C-D, Cui S-D et al (2021) mirtarbase update 2022: an informative resource for experimentally validated mirna–target interactions. Nucleic Acids Res 50:222–230. https://doi.org/10.1093/nar/gkab1079

    Article  CAS  Google Scholar 

  44. González JP, Ramírez-Anguita JM, Saüch-Pitarch J et al (2019) The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48:845–855. https://doi.org/10.1093/nar/gkz1021

    Article  CAS  Google Scholar 

  45. Jiang J, Liu H-L, Tao L et al (2018) Let-7d inhibits colorectal cancer cell proliferation through the CST1/p65 pathway. Int J Oncol. https://doi.org/10.3892/ijo.2018.4419

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tie Y, Chen C, Yang Y et al (2018) Upregulation of let-7f-5p promotes chemotherapeutic resistance in colorectal cancer by directly repressing several pro-apoptotic proteins. Oncol Lett. https://doi.org/10.3892/ol.2018.8410

    Article  PubMed  PubMed Central  Google Scholar 

  47. He D, Yue Z, Li G et al (2018) Low serum levels of miR-101 are associated with poor prognosis of colorectal cancer patients after curative resection. Med Sci Monit 24:7475–7481. https://doi.org/10.12659/msm.909768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen M-B, Yang L, Lu P-H et al (2015) MicroRNA-101 down-regulates sphingosine kinase 1 in colorectal cancer cells. Biochem Biophys Res Commun 463(4):954–960. https://doi.org/10.1016/j.bbrc.2015.06.041

    Article  CAS  PubMed  Google Scholar 

  49. Montgomery RL, Hullinger TG, Semus HM et al (2018) miR-24 inhibited the killing effect of natural killer cells to colorectal cancer cells by downregulating paxillin. Biomed. Pharmacother 101:257–263. https://doi.org/10.1016/j.biopha.2018.02.024

    Article  CAS  Google Scholar 

  50. Shidal C, Singh NP, Nagarkatti P et al (2019) Microrna-92 expression in cd133, jakarta.xml.bind.jaxbelement@62ed5800, melanoma stem cells regulates immunosuppression in the tumor microenvironment via integrin-dependent activation of tgfb. Cancer Res 79:3622–3635. https://doi.org/10.1158/0008-5472.CAN-18-2659

    Article  CAS  Google Scholar 

  51. Yang C, Xia Z, Zhu L et al (2019) Microrna-139-5p modulates the growth and metastasis of malignant melanoma cells via the pi3k/akt signaling pathway by binding to igf1r. Cell Cycle 18:3513–3524. https://doi.org/10.1080/15384101.2019.1690881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguyen T, Kuo C, Nicholl MB et al (2011) Downregulation of microrna-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 6:388–394. https://doi.org/10.4161/epi.6.3.14056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tittarelli A, Navarrete M, Lizana M et al (2020) Hypoxic melanoma cells deliver micrornas to dendritic cells and cytotoxic t lymphocytes through connexin-43 channels. Int J Mol Sci 21(20):7567. https://doi.org/10.3390/ijms21207567

    Article  PubMed  PubMed Central  Google Scholar 

  54. He Y, Yang Y, Liao Y et al (2020) mir-140-3p inhibits cutaneous melanoma progression by disrupting akt/p70s6k and jnk pathways through abhd2. Mol Ther Oncolytics 17:83–93. https://doi.org/10.1016/j.omto.2020.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang M, Cheng Y-J, Sara JD et al (2017) Circulating microrna-145 is associated with acute myocardial infarction and heart failure. Chin Med J (Engl.) 130: 51–56. https://doi.org/10.4103/0366-6999.196573

    Article  CAS  Google Scholar 

  56. Cao RY, Li Q, Miao Y et al (2016) The emerging role of microrna-155 in cardiovascular diseases. Biomed Res Int 2016:9869208. https://doi.org/10.1155/2016/9869208

    Article  CAS  Google Scholar 

  57. Sadat-Ebrahimi S-R, Rezabakhsh A, Aslanabadi N et al (2022) Novel diagnostic potential of mir-1 in patients with acute heart failure. PLoS One 17:0275019. https://doi.org/10.1371/journal.pone.0275019

    Article  CAS  Google Scholar 

  58. Caravia XM, Fanjul V, Oliver E et al (2018) The microrna-29/pgc1a regulatory axis is critical for metabolic control of cardiac function. PLoS Biol 16:2006247. https://doi.org/10.1371/journal.pbio.2006247

    Article  CAS  Google Scholar 

  59. Montgomery RL, Hullinger TG, Semus HM et al (2011) Therapeutic inhibition of mir-208a improves cardiac function and survival during heart failure. Circulation 124:1537–1547. https://doi.org/10.1161/CIRCULATIONAHA.111.030932

    Article  CAS  Google Scholar 

  60. Zoph B, Ghiasi G, Lin T et al (2020) Rethinking pre-training and self-training. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin H (eds) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual. https://doi.org/10.48550/arXiv.2006.06882

  61. Liang X, Li J, Fu Y et al (2022) A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects. J Biomed Inform 132:104131. https://doi.org/10.1016/j.jbi.2022.104131

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xujun Liang or Yongheng Chen.

Ethics declarations

Conflict of Interest

The authors have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 280 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Guo, M., Jiang, L. et al. Predicting miRNA–Disease Associations by Combining Graph and Hypergraph Convolutional Network. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-023-00599-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-023-00599-3

Keywords

Navigation