Skip to main content

Advertisement

Log in

Discovery of Genetic Biomarkers for Alzheimer’s Disease Using Adaptive Convolutional Neural Networks Ensemble and Genome-Wide Association Studies

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Objective

To identify candidate neuroimaging and genetic biomarkers for Alzheimer’s disease (AD) and other brain disorders, especially for little-investigated brain diseases, we advocate a data-driven approach which incorporates an adaptive classifier ensemble model acquired by integrating Convolutional Neural Network (CNN) and Ensemble Learning (EL) with Genetic Algorithm (GA), i.e., the CNN-EL-GA method, into Genome-Wide Association Studies (GWAS).

Methods

Above all, a large number of CNN models as base classifiers were trained using coronal, sagittal, or transverse magnetic resonance imaging slices, respectively, and the CNN models with strong discriminability were then selected to build a single classifier ensemble with the GA for classifying AD, with the help of the CNN-EL-GA method. While the acquired classifier ensemble exhibited the highest generalization capability, the points of intersection were determined with the most discriminative coronal, sagittal, and transverse slices. Finally, we conducted GWAS on the genotype data and the phenotypes, i.e., the gray matter volumes of the top ten most discriminative brain regions, which contained the ten most points of intersection.

Results

Six genes of PCDH11X/Y, TPTE2, LOC107985902, MUC16 and LINC01621 as well as Single-Nucleotide Polymorphisms, e.g., rs36088804, rs34640393, rs2451078, rs10496214, rs17016520, rs2591597, rs9352767 and rs5941380, were identified.

Conclusion

This approach overcomes the limitations associated with the impact of subjective factors and dependence on prior knowledge while adaptively achieving more robust and effective candidate biomarkers in a data-driven way.

Significance

The approach is promising to facilitate discovering effective candidate genetic biomarkers for brain disorders, as well as to help improve the effectiveness of identified candidate neuroimaging biomarkers for brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong-meng L, Di Z, Xue-bin C (2017) Deep learning for early diagnosis of Alzheimer’s disease based on intensive alexnet. Comput Sci 44(6):50–59. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.011

    Article  Google Scholar 

  2. Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M (2015) World Alzheimer report 2015. the global impact of dementia. Alzheimer’s Disease International (ADI), London

    Google Scholar 

  3. Liu S, Liu S, Cai W, Pujol S, Kikinis R, Feng D (2014) Early diagnosis of Alzheimer’s disease with deep learning. Int Sympos Biomed Imaging. https://doi.org/10.1109/ISBI.2014.6868045

    Article  Google Scholar 

  4. Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6(2):67–77. https://doi.org/10.1038/nrneurol.2009.215

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hao X, Bao Y, Guo Y, Yu M, Zhang D, Risacher SL, Saykin AJ, Yao X, Shen L, Initiative ADN et al (2020) Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease. Med Image Anal 60:101625. https://doi.org/10.1016/j.media.2019.101625

    Article  PubMed  Google Scholar 

  6. Jie B, Liu M, Liu J, Zhang D, Shen D (2016) Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer’s disease. IEEE Trans Biomed Eng 64(1):238–249. https://doi.org/10.1109/tbme.2016.2553663

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu M, Li F, Yan H, Wang K, Ma Y, Shen L, Xu M, Initiative ADN et al (2020) A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 208:116459. https://doi.org/10.1016/j.neuroimage.2019.116459

    Article  PubMed  Google Scholar 

  8. Liu M, Zhang D, Adeli E, Shen D (2015) Inherent structure-based multiview learning with multitemplate feature representation for Alzheimer’s disease diagnosis. IEEE Trans Biomed Eng 63(7):1473–1482. https://doi.org/10.1109/tbme.2015.2496233

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu M, Zhang J, Adeli E, Shen D (2018) Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans Biomed Eng 66(5):1195–1206. https://doi.org/10.1109/tbme.2018.2869989

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tong T, Gao Q, Guerrero R, Ledig C, Chen L, Rueckert D, Initiative ADN et al (2016) A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease. IEEE Trans Biomed Eng 64(1):155–165. https://doi.org/10.1109/TBME.2016.2549363

    Article  PubMed  Google Scholar 

  11. Zeng N, Qiu H, Wang Z, Liu W, Zhang H, Li Y (2018) A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease. Neurocomputing 320:195–202. https://doi.org/10.1016/j.neucom.2018.09.001

    Article  Google Scholar 

  12. Zhou T, Thung KH, Liu M, Shen D (2018) Brain-wide genome-wide association study for Alzheimer’s disease via joint projection learning and sparse regression model. IEEE Trans Biomed Eng 66(1):165–175. https://doi.org/10.1109/tbme.2018.2824725

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C (2017) A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage 155:530–548. https://doi.org/10.1016/j.neuroimage.2017.03.057

    Article  PubMed  Google Scholar 

  14. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  15. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  16. Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hosseini-Asl E, Keynton R, El-Baz A (2016) Alzheimer’s disease diagnostics by adaptation of 3d convolutional network. IEEE Int Conf Image Process. https://doi.org/10.1109/ICIP.2016.7532332

    Article  Google Scholar 

  18. Jain R, Jain N, Aggarwal A, Hemanth DJ (2019) Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cogn Syst Res 57:147–159. https://doi.org/10.1016/j.cogsys.2018.12.015

    Article  Google Scholar 

  19. Kruthika K, Maheshappa H, Initiative ADN et al (2019) Cbir system using capsule networks and 3d cnn for Alzheimer’s disease diagnosis. Inform Med Unlocked 14:59–68. https://doi.org/10.1016/j.imu.2019.100227

    Article  Google Scholar 

  20. Tanveer M, Richhariya B, Khan R, Rashid A, Khanna P, Prasad M, Lin C (2020) Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Trans Multimed Comput Commun Appl 16(1):1–35. https://doi.org/10.1145/3344998

    Article  Google Scholar 

  21. Wang H, Shen Y, Wang S, Xiao T, Deng L, Wang X, Zhao X (2019) Ensemble of 3d densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 333:145–156. https://doi.org/10.1016/j.neucom.2018.12.018

    Article  Google Scholar 

  22. Pan D, Zeng A, Jia L, Huang Y, Frizzell T, Song X (2020) Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning. Front Neurosci. https://doi.org/10.3389/fnins.2020.00259

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hariri AR, Weinberger DR (2003) Imaging genomics. Br Med Bull 65(1):259–270. https://doi.org/10.1002/9783527678679.dg05936

    Article  CAS  PubMed  Google Scholar 

  24. Chauhan G, Adams HH, Bis JC, Weinstein G, Yu L, Toglhofer AM, Smith AV, Van Der Lee SJ, Gottesman RF, Thomson R et al (2015) Association of alzheimer’s disease gwas loci with mri markers of brain aging. Neurobiol Aging 36(4):1765-e7. https://doi.org/10.1016/j.neurobiolaging.2014.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan L, Yu JT, Zhang W, Wu ZC, Zhang Q, Liu QY, Wang W, Wang HF, Ma XY, Cui WZ (2013) Association of GWAS-linked loci with late-onset Alzheimer’s disease in a northern Han Chinese population. Alzheimer’s Dement 9(5):546–553. https://doi.org/10.1016/j.jalz.2012.08.007

    Article  Google Scholar 

  26. Salvatore C, Cerasa A, Battista P, Gilardi MC, Quattrone A, Castiglioni I (2015) Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Front Neurosci 9:307. https://doi.org/10.3389/fnins.2015.00307

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. https://doi.org/10.1186/s13742-015-0047-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  PubMed  Google Scholar 

  29. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR, Fox PT, Eickhoff SB, Yu C, Jiang T (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26(8):3508–3526. https://doi.org/10.1093/cercor/bhw157

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst. https://doi.org/10.1007/s10916-018-0932-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sul JH, Martin LS, Eskin E (2018) Population structure in genetic studies: Confounding factors and mixed models. PLoS Genet 14(12):e1007309. https://doi.org/10.1371/journal.pgen.1007309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liew SS, Khalil-Hani M, Bakhteri R (2016) Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems. Neurocomputing 216:718–734. https://doi.org/10.1016/j.neucom.2016.08.037

    Article  Google Scholar 

  33. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y (eds) International Conference on Learning Representations, Conference Track Proceedings, ICLR 2015, San Diego, CA, USA, May 7–9, 2015

  34. Pan D, Huang Y, Zeng A, Jia L, Song X, A.D.N.I. et al (2019) Early diagnosis of Alzheimer’s disease based on deep learning and GWAS. International workshop on human brain and artificial intelligence. Springer, Berlin, pp 52–68. https://doi.org/10.1007/978-981-15-1398-5_4

    Chapter  Google Scholar 

  35. Carrasquillo MM, Zou F, Pankratz VS, Wilcox SL, Ma L, Walker LP, Younkin SG, Younkin CS, Younkin LH, Bisceglio GD et al (2009) Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease. Nat Genet 41(2):192–198. https://doi.org/10.1038/ng.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beecham GW, Naj A, Gilbert JR, Haines JL, Buxbaum JD, Pericak-Vance MA (2010) PCDH11X variation is not associated with late-onset Alzheimer disease susceptibility. Psychiatr Genet 20(6):321. https://doi.org/10.1097/YPG.0b013e32833b635d

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rosenberg RN, Lambracht-Washington D, Yu G, Xia W (2016) Genomics of Alzheimer disease: a review. JAMA Neurol 73(7):867–874. https://doi.org/10.1001/jamaneurol.2016.0301

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kantojarvi K (2013) Exploring genetic susceptibility to autism spectrum disorders. Academic Dissertation, University of Helsinki

  39. Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H, Louis ED, Cote LJ, Andrews H, Waters C et al (2011) Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med Genet 12(1):104. https://doi.org/10.1186/1471-2350-12-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW, Doheny KF, Gusella JF, Nichols WC, Foroud T, Richard HM (2008) Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124(6):593–605. https://doi.org/10.1007/s00439-008-0582-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galichon P, Mesnard L, Hertig A, Stengel B, Rondeau E (2012) Unrecognized sequence homologies may confound genome-wide association studies. Nucleic Acids Res 40(11):4774–4782. https://doi.org/10.1093/nar/gks169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jean PS (2008) Genes associated with schizophrenia identified using a whole genome scan. US Patent App. 11/970,611

  43. Staley LA (2018) Analysis of whole exome sequence data in affected cousin pairs from high-risk Alzheimer’s pedigrees. In: Master thesis, all Theses and Dissertations, Brigham Young University, p 7332

  44. Bi XA, Liu Y, Xie Y, Hu X, Jiang Q (2020) Morbigenous brain region and gene detection with a genetically evolved random neural network cluster approach in late mild cognitive impairment. Bioinformatics 36(8):2561–2568. https://doi.org/10.1093/bioinformatics/btz967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bi XA, Hu X, Wu H, Wang Y (2020) Multimodal data analysis of Alzheimer’s disease based on clustering evolutionary random forest. IEEE J Biomed Health Inform 24(10):2973–2983. https://doi.org/10.1109/jbhi.2020.2973324

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their constructive comments on this article. This study was supported by NSF of China (Grant Nos. 61976058, 61772143 and U19A2067), National Key RD Program of China (Grant No. 2018YFC0910405), Science and Technology Planning Project of Guangdong (Grant No. 2021A1515012300, 2019A050510041 and 2020A1515010941), and Science and Technology Planning Project of Guangzhou (Grant Nos. 202103000034 and 202002020090). Additional funding for neurological research was from Surrey Hospital & Outpatient Centre Foundation (FHG2017-001). Data collection and sharing for this project were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense Award No. W81XWH-12-2-0012). ADNI was funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research was providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Additional funding support for the manuscript preparation was from the Surrey Hospital & Outpatient Centre Foundation of Fraser Health, Canada.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Dan Pan or Shaoliang Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Alzheimer’s Disease Neuroimaging Initiative-Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, A., Rong, H., Pan, D. et al. Discovery of Genetic Biomarkers for Alzheimer’s Disease Using Adaptive Convolutional Neural Networks Ensemble and Genome-Wide Association Studies. Interdiscip Sci Comput Life Sci 13, 787–800 (2021). https://doi.org/10.1007/s12539-021-00470-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00470-3

Keywords

Navigation