Skip to main content

Advertisement

Log in

Impact of IL28 Genotypes and Modeling the Interactions of HCV Core Protein on Treatment of Hepatitis C

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Background

Mutations in the core CVR region of hepatitis C virus (HCV) and polymorphisms of interleukin 28B (IL28B) are associated with progression toward liver disease and in response to therapy. In addition, interactions of the core protein with some cell interactors can be related to HCV liver damage.

Aim

This study aimed to evaluate the effect of core mutations as well as IL28B polymorphism on clinical features, sustained virological response (SVR) in 1a and 3a HCV genotypes amongst Iranian HCV infected patients, and the impact of mutations on core protein properties, antigenic properties, and interactions with HCV inhibitors, using several bioinformatics tools.

Methods

Seventy-nine Iranian patients infected with HCV genotypes 1a and 3a and diagnosed with chronic active hepatitis were examined. Plasma viral RNA was used to amplify and sequence the HCV Core gene; also, HCV viral load, molecular genotyping, and the liver enzymes were determined for all samples. The sequencing results were analyzed by several reliable bioinformatics tools to determine the physicochemical properties, B cell epitopes, post-modification changes, and secondary/tertiary structures; and evaluate the interactions with 4 drugs by docking method.

Result

There were some substitutions in core CVR related to ALT and AST enzymes that can lead to HCV advanced liver disease. The most prevalent mutation for 3a genotypes was a substitution in aa 162 (I to V) while we did not find any mutation in 1a responder group. Polymorphism of the rs8099917 showed that the majority of patients had TG heterozygous and carried CT genotype at the rs12979860. Analysis indicated several phosphorylation sits for core protein as well as two important disulfide bonds. Immunogenic prediction showed that core protein can strongly induce the immune system. Interaction analysis, using the docking method revealed two potential interactors (Vitronectin and SETD2).

Conclusion

Generally, mutations in all core CVR regions in all patients showed a relationship between such substitutions and higher liver enzymes that can result in advanced liver disease progression in HCV infected patients. Furthermore, immunoinformatics analysis determined the possible immunodominant regions to be considered in HCV vaccine designs. Furthermore, no association between SVR and IL28B polymorphism was shown. In silico analysis determined modification sites, structures, B-cell epitopes of core protein and interactions with several interactors can lead to persistent HCV infection in the cell and the progress of liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sarvari J, Mojtahedi Z, Kuramitsu Y, Fattahi MR, Ghaderi A, Nakamura K, Erfani N (2014) Comparative proteomics of sera from HCC patients with different origins. Hepatitis Monthly. https://doi.org/10.5812/hepatmon.13103

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ghouri A, Kumar S, Khan SA, Ghani MH, Aslam S, Asadullah (2014) Frequency of type 2 diabetes mellitus in patients with chronic hepatitis C virus infection. J Liaquat Uni Med Health Sci 13:51–56

    Google Scholar 

  3. Dehghani B, Dehghani A, Sarvari J (2019) Knowledge and awareness regarding hepatitis B, hepatitis C, and human immunodeficiency viruses among college students: a report from Iran. Int Quart Commun Health Educ. https://doi.org/10.1177/0272684X19896727

    Article  Google Scholar 

  4. Ajorloo M, Bamdad T, Hashempour T, Alborzi AM, Mozhgani SHR, Asadi R, Haj SA, Merat S (2015) Detection of specific antibodies to HCV-ARF/CORE+ 1 protein in cirrhotic and non-cirrhotic patients with hepatitis C: a possible association with progressive fibrosis. Arch Iran Med 18:304–307

    PubMed  Google Scholar 

  5. Hashempoor T, Bamdad T, Merat S, Janzamin E, Nemati L, Jabbari H, Sharifi A-H, Zamini H (2010) Expansion of CD4 + CD25 + FoxP3 + regulatory T cells in chronic hepatitis C virus infection. Iran J Immunol 7(3):177–185

    CAS  PubMed  Google Scholar 

  6. Sarvari J, Moattari A, Pirbonyeh N, Moini M, Hosseini SY (2016) The Impact of IFN-γ gene polymorphisms on spontaneous clearance of HCV infection in Fars Province, Southern of Iran. J Clin Lab Anal 30(4):301–307. https://doi.org/10.1002/jcla.21855

    Article  CAS  PubMed  Google Scholar 

  7. Abdel-Hakeem MS, Shoukry NH (2014) Protective immunity against hepatitis C: many shades of gray. Front Immunol 5:274. https://doi.org/10.3389/fimmu.2014.00274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Musavi Z, Hashempour T, Moayedi J, Dehghani B, Ghassabi F, Hallaji M, Hosseini SY, Yaghoubi R, Gholami S, Dehyadegari MA (2020) Antibody development to HCV alternate reading frame protein in liver transplant candidate and its computational analysis. Curr Proteom 17(2):154–170. https://doi.org/10.2174/1570164617666190822103329

    Article  CAS  Google Scholar 

  9. Quiroga JA, Castillo I, Pardo M, Rodríguez-Iñigo E, Carreño V (2006) Combined hepatitis C virus (HCV) antigen-antibody detection assay does not improve diagnosis for seronegative individuals with occult HCV infection. J Clin Microbiol 44(12):4559–4560. https://doi.org/10.1128/JCM.01440-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tayebeh H, Behzad D, Zahra M, Tahereh A, Zahra H, Javad M, Maryam Y, Mohammad Ali D (2020) Association of mutations in the NS5A-PKRBD region and IFNL4 genotypes with hepatitis c interferon responsiveness and its functional and structural analysis. Curr Proteom 17:1–12. https://doi.org/10.2174/1570164617666200107091124

    Article  Google Scholar 

  11. Hashempour T, Dehghani B, Mousavi Z, Yahaghi M, Hasanshahi Z, Moayedi J, Akbari T, Davarpanah MA (2019) Evaluating drug resistant mutations to HCV NS3 protease inhibitors in iranian Naïve patients. Int J Peptide Res Ther. https://doi.org/10.1007/s10989-019-09957-6

    Article  Google Scholar 

  12. Fukutomi T, Zhou Y, Kawai S, Eguchi H, Wands JR, Li J (2005) Hepatitis C virus core protein stimulates hepatocyte growth: Correlation with upregulation of wnt-1 expression. Hepatology 41(5):1096–1105. https://doi.org/10.1002/hep.20668

    Article  CAS  PubMed  Google Scholar 

  13. Aoki H, Hayashi J, Moriyama M, Arakawa Y, Hino O (2000) Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J Virol 74(4):1736–1741. https://doi.org/10.1128/jvi.74.4.1736-1741.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vescovo T, Refolo G, Vitagliano G, Fimia GM, Piacentini M (2016) Molecular mechanisms of hepatitis C virus–induced hepatocellular carcinoma. Clin Microbiol Infect 22(10):853–861. https://doi.org/10.1016/j.cmi.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  15. El-Zayadi A-R, Anis M (2012) Hepatitis C virus induced insulin resistance impairs response to anti viral therapy. World J Gastroenterol WJG 18(3):212. https://doi.org/10.3748/wjg.v18.i3.212

    Article  PubMed  Google Scholar 

  16. Funaoka Y, Sakamoto N, Suda G, Itsui Y, Nakagawa M, Kakinuma S, Watanabe T, Mishima K, Ueyama M, Onozuka I (2011) Analysis of interferon signaling by infectious hepatitis C virus clones with substitutions of core amino acids 70 and 91. J Virol 85(12):5986–5994. https://doi.org/10.1128/JVI.02583-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dehghani B, Hashempour T, Hasanshahi Z, Moayedi J (2020) Bioinformatics analysis of domain 1 of HCV-core protein: Iran. Int J Pept Res Ther 26(1):303–320. https://doi.org/10.1007/s10989-019-09838-y

    Article  CAS  PubMed  Google Scholar 

  18. Horie T, Shimizu I, Horie C, Yogita S, Tashiro S, Ito S (1999) Mutations of the core gene sequence of hepatitis C virus isolated from liver tissues with hepatocellular carcinoma. Hepatol Res 13(3):240–251. https://doi.org/10.1016/S1386-6346(98)00097-7

    Article  Google Scholar 

  19. Sultana C, Oprişan G, Teleman MD, Dinu S (2016) Impact of hepatitis C virus core mutations on the response to interferon-based treatment in chronic hepatitis C. World J Gastroenterol 22(37):8406. https://doi.org/10.3748/wjg.v22.i37.8406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perales C, Quer J, Gregori J, Esteban JI, Domingo E (2015) Resistance of hepatitis C virus to inhibitors: complexity and clinical implications. Viruses 7(11):5746–5766. https://doi.org/10.3390/v7112902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fishman SL, Factor SH, Balestrieri C, Fan X, DiBisceglie AM, Desai SM, Benson G, Branch AD (2009) Mutations in the hepatitis C virus core gene are associated with advanced liver disease and hepatocellular carcinoma. Clin Cancer Res 15(9):3205–3213. https://doi.org/10.1158/1078-0432.CCR-08-2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khaliq S, Jahan S, Pervaiz A (2011) Sequence variability of HCV Core region: important predictors of HCV induced pathogenesis and viral production. Infect Genet Evol 11(3):543–556. https://doi.org/10.1016/j.meegid.2011.01.017

    Article  CAS  PubMed  Google Scholar 

  23. Alhamlan FS, Al-Ahdal MN, Khalaf NZ, Abdo AA, Sanai FM, Al-Ashgar HI, ElHefnawi M, Zaid A, Al-Qahtani AA (2014) Genetic variability of the core protein in hepatitis C virus genotype 4 in Saudi Arabian patients and its implication on pegylated interferon and ribavirin therapy. J Transl Med 12(1):91. https://doi.org/10.1186/1479-5876-12-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El-Shamy A, Pendleton M, Eng FJ, Doyle EH, Bashir A, Branch AD (2016) Impact of HCV core gene quasispecies on hepatocellular carcinoma risk among HALT-C trial patients. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep27025

    Article  CAS  Google Scholar 

  25. Sharma SD (2010) Hepatitis C virus: molecular biology & current therapeutic options. Indian J Med Res 131(1):17–34

    CAS  PubMed  Google Scholar 

  26. Aparicio E, Parera M, Franco S, Perez-Alvarez N, Tural C, Clotet B, Martínez MA (2010) IL28B SNP rs8099917 is strongly associated with pegylated interferon-α and ribavirin therapy treatment failure in HCV/HIV-1 coinfected patients. PLoS ONE. https://doi.org/10.1371/journal.pone.0013771

    Article  PubMed  PubMed Central  Google Scholar 

  27. Asselah T, Estrabaud E, Bieche I, Lapalus M, De Muynck S, Vidaud M, Saadoun D, Soumelis V, Marcellin P (2010) Hepatitis C: viral and host factors associated with non-response to pegylated interferon plus ribavirin. Liver Int 30(9):1259–1269. https://doi.org/10.1111/j.1478-3231.2010.02283.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corchado S, López-Cortés LF, Rivero-Juárez A, Torres-Cornejo A, Rivero A, Márquez-Coello M, Girón-González J-A (2014) Liver fibrosis, host genetic and hepatitis C virus related parameters as predictive factors of response to therapy against hepatitis C virus in HIV/HCV coinfected patients. PLoS ONE. https://doi.org/10.1371/journal.pone.0101760

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alborzi A, Hashempour T, Moayedi J, Musavi Z, Pouladfar G, Merat S (2017) Role of serum level and genetic variation of IL-28B in interferon responsiveness and advanced liver disease in chronic hepatitis C patients. Med Microbiol Immunol 206(2):165–174. https://doi.org/10.1007/s00430-017-0497-y

    Article  CAS  PubMed  Google Scholar 

  30. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Springer, Berlin, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571

    Chapter  Google Scholar 

  31. Dehghani B, Hasanshahi Z, Hashempour T (2020) HIV capsid and protease new targets of Melittin. Int J Peptide Res Ther. https://doi.org/10.1007/s10989-019-10002-9

    Article  Google Scholar 

  32. Moattari A, Dehghani B, Khodadad N, Tavakoli F (2015) In silico functional and structural characterization of H1N1 influenza a viruses hemagglutinin, 2010–2013, Shiraz, Iran. Acta Biotheor 63(2):183–202. https://doi.org/10.1007/s10441-015-9260-1

    Article  PubMed  Google Scholar 

  33. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049. https://doi.org/10.1093/nar/gkh253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649. https://doi.org/10.1002/pmic.200300771

    Article  CAS  PubMed  Google Scholar 

  35. Gupta R, Jung E, Brunak S (2004) Prediction of N-glycosylation sites in human proteins

  36. Gupta R, Brunak S (2001) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 7:310–322

    Google Scholar 

  37. Ferrè F, Clote P (2006) DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res 34(suppl_2):W182–W185. https://doi.org/10.1093/nar/gkl189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47(D1):D339–D343

    Article  CAS  PubMed  Google Scholar 

  39. Saha S, Raghava G (2008) ABCPred benchmarking datasets. 2006a. https://doi.org/10.1093/nar/gky1006

  40. Dehghani B, Hasanshahi Z, Hashempour T, Motamedifar M (2019) The possible regions to design Human Papilloma Viruses vaccine in Iranian L1 protein. Biologia. https://doi.org/10.2478/s11756-019-00386-w

    Article  PubMed  PubMed Central  Google Scholar 

  41. Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) International Conference on Artificial Immune Systems. Springer, Berlin, pp 197–204. https://doi.org/10.1007/978-3-540-30220-9_16

    Chapter  Google Scholar 

  42. Singh H, Raghava GPS (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237. https://doi.org/10.1093/bioinformatics/17.12.1236

    Article  CAS  PubMed  Google Scholar 

  43. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6):681–684. https://doi.org/10.1093/bioinformatics/11.6.681

    Article  CAS  Google Scholar 

  44. Dehghani B, Hashempour T, Hasanshahi Z (2020) Interaction of human herpesvirus 8 viral interleukin-6 with human interleukin-6 receptor using in silico approach: the potential role in HHV-8 pathogenesis. Curr Proteom 17(2):107–116. https://doi.org/10.2174/1570164616666190626151949

    Article  CAS  Google Scholar 

  45. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dehghani B, Ghasabi F, Hashempoor T, Joulaei H, Hasanshahi Z, Halaji M, Chatrabnous N, Mousavi Z, Moayedi J (2017) Functional and structural characterization of Ebola virus glycoprotein (1976–2015)—An in silico study. Int J Biomath 10(08):1750108. https://doi.org/10.1142/S179352451750108X

    Article  Google Scholar 

  48. Dehghani B, Hashempour T, Hasanshahi Z (2020) Using immunoinformatics and structural approaches to design a novel HHV8 vaccine. Int J Pept Res Ther 26(1):321–331. https://doi.org/10.1007/s10989-019-09839-x

    Article  CAS  Google Scholar 

  49. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37(suppl_2):W510–W514. https://doi.org/10.1093/nar/gkp322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kangueane P, Nilofer C (2018) Protein-protein docking: methods and tools. In: Protein-protein and domain-domain interactions. Springer, Singapore, pp 161–168. https://doi.org/10.1007/978-981-10-7347-2_14

  51. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O’hUigin C, Kidd J, Kidd K, Khakoo SI, Alexander G (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461(7265):798–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jia Z, Ding Y, Tian S, Niu J, Jiang J (2012) Test of IL28B polymorphisms in chronic hepatitis C patients treated with PegIFN and ribavirin depends on HCV genotypes: results from a meta-analysis. PLoS ONE 7(9):e45698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharafi H, Pouryasin A, Alavian SM, Behnava B, Keshvari M, Salimi S, Mehrnoush L, Fatemi A (2012) Distribution of IL28B genotypes in Iranian patients with chronic hepatitis C and healthy individuals. Hepatitis Monthly 12(12):e8387

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aziz H, Raza A, Ali K, Khattak JZK, Irfan J, Gill ML (2015) Polymorphism of the IL28B gene (rs8099917, rs12979860) and virological response of Pakistani hepatitis C virus genotype 3 patients to pegylated interferon therapy. Int J Infect Dis 30:91–97

    Article  CAS  PubMed  Google Scholar 

  55. Hayes CN, Imamura M, Aikata H, Chayama K (2012) Genetics of IL28B and HCV—response to infection and treatment. Nat Rev Gastroenterol Hepatol 9(7):406

    Article  CAS  PubMed  Google Scholar 

  56. Alhamlan FS, Al-Ahdal MN, Khalaf NZ, Abdo AA, Sanai FM, Al-Ashgar HI, ElHefnawi M, Zaid A, Al-Qahtani AA (2014) Genetic variability of the core protein in hepatitis C virus genotype 4 in Saudi Arabian patients and its implication on pegylated interferon and ribavirin therapy. J Transl Med 12:91. https://doi.org/10.1186/1479-5876-12-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alestig E, Arnholm B, Eilard A, Lagging M, Nilsson S, Norkrans G, Wahlberg T, Wejstål R, Westin J, Lindh M (2011) Core mutations, IL28B polymorphisms and response to peginterferon/ribavirin treatment in Swedish patients with hepatitis C virus genotype 1 infection. BMC Infect Dis 11(1):124. https://doi.org/10.1186/1471-2334-11-124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Furui Y, Hoshi Y, Murata K, Ito K, Suzuki K, Uchida S, Satake M, Mizokami M, Tadokoro K (2011) Prevalence of amino acid mutation in hepatitis C virus core region among Japanese volunteer blood donors. J Med Virol 83(11):1924–1929. https://doi.org/10.1002/jmv.22216

    Article  CAS  PubMed  Google Scholar 

  59. Nakamoto S, Imazeki F, Fukai K, Fujiwara K, Arai M, Kanda T, Yonemitsu Y, Yokosuka O (2010) Association between mutations in the core region of hepatitis C virus genotype 1 and hepatocellular carcinoma development. J Hepatol 52(1):72–78. https://doi.org/10.1016/j.jhep.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  60. Anjum S, Afzal MS, Ahmad T, Aslam B, Waheed Y, Shafi T, Qadri I (2013) Mutations in the STAT1-interacting domain of the hepatitis C virus core protein modulate the response to antiviral therapy. Mol Med Rep 8(2):487–492. https://doi.org/10.3892/mmr.2013.1541

    Article  PubMed  Google Scholar 

  61. Guicciardi M, Gores GJ (2005) Apoptosis: a mechanism of acute and chronic liver injury. Gut 54(7):1024–1033. https://doi.org/10.1136/gut.2004.053850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bantel H, Schulze-Osthoff K (2003) Apoptosis in hepatitis C virus infection. Cell Death Differ 10(1):S48–S58. https://doi.org/10.1038/sj.cdd.4401119

    Article  CAS  PubMed  Google Scholar 

  63. Malhi H, Gores GJ (2008) Cellular and molecular mechanisms of liver injury. Gastroenterology 134(6):1641–1654. https://doi.org/10.1053/j.gastro.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  64. El Bassiouny AE, El-Bassiouni NE, Nosseir MM, Zoheiry MM, El-Ahwany EG, Salah F, Omran ZS, Ibrahim RA (2008) Circulating and hepatic Fas expression in HCV-induced chronic liver disease and hepatocellular carcinoma. Medscape J Med 10(6):130

    PubMed  PubMed Central  Google Scholar 

  65. Marusawa H, Hijikata M, Chiba T, Shimotohno K (1999) Hepatitis C virus core protein inhibits Fas-and tumor necrosis factor alpha-mediated apoptosis via NF-κB activation. J Virol 73(6):4713–4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hahn CS, Cho YG, Kang B-S, Lester IM, Hahn YS (2000) The HCV core protein acts as a positive regulator of fas-mediated apoptosis in a human lymphoblastoid T cell line. Virology 276(1):127–137. https://doi.org/10.1006/viro.2000.0541

    Article  CAS  PubMed  Google Scholar 

  67. Ruggieri A, Harada T, Matsuura Y, Miyamura T (1997) Sensitization to Fas-mediated apoptosis by hepatitis C virus core protein. Virology 229(1):68–76. https://doi.org/10.1006/viro.1996.8420

    Article  CAS  PubMed  Google Scholar 

  68. Han Y, Niu J, Wang D, Li Y (2016) Hepatitis C virus protein interaction network analysis based on hepatocellular carcinoma. PLoS ONE 11(4):e0153882. https://doi.org/10.1371/journal.pone.0153882

    Article  PubMed  PubMed Central  Google Scholar 

  69. Montaldo C, Mattei S, Baiocchini A, Rotiroti N, Nonno FD, Pucillo LP, Cozzolino AM, Battistelli C, Amicone L, Ippolito G (2014) Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload. Proteomics 14(9):1107–1115. https://doi.org/10.1002/pmic.201300422

    Article  CAS  PubMed  Google Scholar 

  70. Guillaud O, Gurram K, Puglia M, Lilly L, Adeyi O, Renner E, Selzner N (2013) Angiotensin blockade does not affect fibrosis progression in recurrent hepatitis C after liver transplantation. Transplant Proc 6:2331–2336. https://doi.org/10.1016/j.transproceed.2013.01.067

    Article  CAS  Google Scholar 

  71. Forrest E, Thorburn D, Spence E, Oien K, Inglis G, Smith CA, McCruden E, Fox R, Mills P (2005) Polymorphisms of the renin–angiotensin system and the severity of fibrosis in chronic hepatitis C virus infection. J Viral Hepatitis 12(5):519–524. https://doi.org/10.1111/j.1365-2893.2005.00630.x

    Article  CAS  Google Scholar 

  72. Hussain S, Schwank J, Staib F, Wang X, Harris C (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26(15):2166–2176. https://doi.org/10.1038/sj.onc.1210279

    Article  CAS  PubMed  Google Scholar 

  73. Butel JS (2000) Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21(3):405–426. https://doi.org/10.1093/carcin/21.3.405

    Article  CAS  PubMed  Google Scholar 

  74. McLaughlin-Drubin ME, Munger K (2008) Viruses associated with human cancer. Biochim Biophys Acta 1782(3):127–150. https://doi.org/10.1016/j.bbadis.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  75. Kao C-F, Chen S-Y, Chen J-Y, Lee Y-HW (2004) Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene 23(14):2472–2483. https://doi.org/10.1038/sj.onc.1207368

    Article  CAS  PubMed  Google Scholar 

  76. Banerjee A, Saito K, Meyer K, Banerjee S, Ait-Goughoulte M, Ray RB, Ray R (2009) Hepatitis C virus core protein and cellular protein HAX-1 promote 5-fluorouracil-mediated hepatocyte growth inhibition. J Virol 83(19):9663–9671. https://doi.org/10.1128/JVI.00872-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alisi A, Giambartolomei S, Cupelli F, Merlo P, Fontemaggi G, Spaziani A, Balsano C (2003) Physical and functional interaction between HCV core protein and the different p73 isoforms. Oncogene 22(17):2573–2580. https://doi.org/10.1038/sj.onc.1206333

    Article  CAS  PubMed  Google Scholar 

  78. Kao C-F, Chen S-Y, Lee Y-HW (2004) Activation of RNA polymerase I transcription by hepatitis C virus core protein. J Biomed Sci 11(1):72–94. https://doi.org/10.1007/bf02256551

    Article  CAS  PubMed  Google Scholar 

  79. Kasprzak A, Adamek A, Przybyszewska W, Czajka A, Olejniczak K, Juszczyk J, Biczysko W, Zabel M (2009) p53 immunocytochemistry and TP53 gene mutations in patients with chronic hepatitis C virus (HCV) infection. Folia Histochem Cytobiol 47(1):35–42. https://doi.org/10.2478/v10042-009-0003-5

    Article  CAS  PubMed  Google Scholar 

  80. Lechmann M, Ihlenfeldt HG, Braunschweiger I, Giers G, Jung G, Matz B, Kaiser R, Sauerbruch T, Spengler U (1996) T-and B-cell responses to different hepatitis C virus antigens in patients with chronic hepatitis C infection and in healthy anti-hepatitis C virus—positive blood donors without viremi. Hepatology 24(4):790–795. https://doi.org/10.1002/hep.510240406

    Article  CAS  PubMed  Google Scholar 

  81. Ferroni P, Mascolo G, Zaninetti M, Colzani D, Pregliasco F, Pirisi M, Barbone F, Gasparini V (1993) Identification of four epitopes in hepatitis C virus core protein. J Clin Microbiol 31(6):1586–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harase I, Moriyama T, Kaneko T, Kita H, Nomura M, Suzuki G, Ohnishi H, Muto Y, Yazaki Y, Imawari M (1995) Immune response to hepatitis C virus core protein in mice. Immunol Cell Biol 73(4):346–352. https://doi.org/10.1038/icb.1995.53

    Article  CAS  PubMed  Google Scholar 

  83. Lu W, Ou J-h (2002) Phosphorylation of hepatitis C virus core protein by protein kinase A and protein kinase C. Virology 300(1):20–30. https://doi.org/10.1006/viro.2002.1524

    Article  CAS  PubMed  Google Scholar 

  84. Shih C-M, Chen C-M, Chen S-Y, Lee Y (1995) Modulation of the trans-suppression activity of hepatitis C virus core protein by phosphorylation. J Virol 69(2):1160–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank personnel of Digestive Disease Research Institute (DDRI) of Shariati Hospital, affiliated with Tehran University of Medical Sciences for excellent work in collecting blood samples.‏ The authors would like to express special thanks to Saeed Ghanbari (Phd student of the department of biostatistics, medical school, Shiraz University of Medical Sciences, Shiraz, Iran) for his statistical assistance. The authors wish to thank Mr. H. Argasi and Dr. Nasrin Shokrpour at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript.

Funding

This study was funded by Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Hashempour.

Ethics declarations

Conflict of interest

Author Tayebeh Hashempour declares that she has no conflict of interest. Author Behzad Dehghani declares that he has no conflict of interest. Author Zahra Musavi declares that she has no conflict of interest. Author Javad Moayedi declares that he has no conflict of interest. Author Zahra Hasanshahi declares that she has no conflict of interest. Author Jamal Sarvari declares that he has no conflict of interest. Author Seyed Younes Hosseini declares that he has no conflict of interest. Author Ebrahim Hosseini declares that he has no conflict of interest. Author Maryam Moeini declares that she has no conflict of interest. Author Shahin Merat declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The study was approved by the local Ethics Committee of Shiraz University of Medical Sciences (Code: 92-18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashempour, T., Dehghani, B., Musavi, Z. et al. Impact of IL28 Genotypes and Modeling the Interactions of HCV Core Protein on Treatment of Hepatitis C. Interdiscip Sci Comput Life Sci 12, 424–437 (2020). https://doi.org/10.1007/s12539-020-00382-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00382-8

Keywords

Navigation