Skip to main content
Log in

Activation of RNA polymerase I transcription by hepatitis C virus core protein

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

The hepatitis C virus (HCV) core protein has been implicated in the transregulation of various RNA polymerase (Pol) II dependent genes as well as in the control of cellular growth and proliferation. In this study, we show that the core protein, whether individually expressed or produced as part of the HCV viral polyprotein, is the only viral product that has the potential to activate RNA Pol I transcription. Deletion analysis demonstrated that the fragment containing the N-terminal 1–156 residues, but not the 1–122 residues, of HCV core protein confers the same level of transactivation activity as the full-length protein. Moreover, the integrity of the Ser116 and Arg117 residues of HCV core protein was found to be critical for its transregulatory functions. We used DNA affinity chromatography to analyze the human ribosomal RNA promoter associated transcription machinery, and the results indicated that recruitment of the upstream binding factor and RNA Pol I to the ribosomal RNA promoter is enhanced in the presence of HCV core protein. Additionally, the HCV core protein mediated activation of ribosomal RNA transcription is accompanied by the hyperphosphorylation of upstream binding factor on serine residues, but not on threonine residues. Moreover, HCV core protein is present within the RNA Pol I multiprotein complex, indicating its direct involvement in facilitating the formation of a functional transcription complex. Protein-protein interaction studies further indicated that HCV core protein can associate with the selectivity factor (SL1) via direct contact with a specific component, TATA-binding protein (TBP). Additionally, the HCV core protein in cooperation with TBP is able to activate RNA Pol II and Pol III mediated transcription, in addition to RNA Pol I transcription. Thus, the results of this study suggest that HCV has evolved a mechanism to deregulate all three nuclear transcription systems, partly through targeting of the common transcription factor, TBP. Notably, the ability of the HCV core protein to upregulate RNA Pol I and Pol III transcription supports its active role in promoting cell growth, proliferation, and the progression of liver carcinogenesis during HCV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki H, Hayashi J, Moriyama M, Arakawa Y, Hino O. Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J Virol 74:1736–1741;2000.

    Google Scholar 

  2. Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman MJ, Miyamura T, Brechot C. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci USA 94:1200–1205;1997.

    Google Scholar 

  3. Bell SP, Learned RM, Jantzen HM, Tjian R. Functional cooperativity between transcription factor UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192–1197;1988.

    Google Scholar 

  4. Borer RA, Lehner CF, Eppenberger HM, Nigg EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390;1989.

    Google Scholar 

  5. Brown TR, Scott PH, Stein T, Winter AG, White RJ. RNA polymerase III transcription: Its control by tumor suppressors and its deregulation by transforming agents. Gene Expr 9:15–28;2000.

    Google Scholar 

  6. Budde A, Grummt I. p53 represses ribosomal gene transcription. Oncogene 18:1119–1124;1999.

    Google Scholar 

  7. Cairns CA, White R. p53 is a general repressor of RNA polymerase III transcription. EMBO J 17:3112–3123;1998.

    Google Scholar 

  8. Chen CM, You LR, Hwang LH, Lee YHW. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor. J Virol 71:9417–9426;1997.

    Google Scholar 

  9. Chen HK, Pai CY, Huang JY, Yeh NH. Human Nopp140, which interacts with RNA polymerase I: Implications for rRNA gene transcription and nucleolar structure organization. Mol Cell Biol 19:8536–8546;1999.

    Google Scholar 

  10. Chen SY, Kao CF, Chen CM, Shih CM, Hsu MJ, Chao CH, Wang SH, You LR, Lee YHW. Mechanism for inhibition of hepatitis B virus gene expression and replication by hepatitis C virus core protein. J Biol Chem 278:591–607;2003.

    Google Scholar 

  11. Chesnokov I, Chu WM, Botchan MR, Schmid WM. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 16:7084–7088;1996.

    Google Scholar 

  12. Chiang CM, Roeder RG. Expression and purification of general transcription factors by FLAG epitope-tagging and peptide elution. Pept Res 6:62–64;1993.

    Google Scholar 

  13. Cho JW, Baek WB, Suh SI, Yang SH, Chang J, Sung YC, Suh MH. Hepatitis C virus core protein promotes cell proliferation through the upregulation of cyclin E expression levels. Liver 21:137–142;2001.

    Google Scholar 

  14. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362;1989.

    Google Scholar 

  15. Comai L, Tanese N, Tjian R. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68:965–976;1992.

    Google Scholar 

  16. Comai L, Zomerdijk JC, Beckmann H, Zhou S, Admon A, Tjian R. Reconstitution of transcription factor SL1:Exclusive binding of TBP by SL1 or TFIID subunits. Science 266:1966–1972;1994.

    Google Scholar 

  17. Damania B, Alwine JC. TAF-like function of SV40 large T antigen. Genes Dev 10:1369–1381;1996.

    Google Scholar 

  18. Derenzini M, Trere D, Pession A, Montanaro L, Sirri V, Ochs RL. Nucleolar function and size in cancer cells. Am J Pathol 152:1291–1297;1998.

    Google Scholar 

  19. Dingermann T, Sharp S, Schaack J, Soll D. Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions. J Biol Chem 258:10395–10402;1983.

    Google Scholar 

  20. Erhardt A, Hassan M, Heintges T, Haussinger D. Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology 292:272–284;2002.

    Google Scholar 

  21. Feuerstein N, Chan PK, Mond JJ. Identification of numatrin, the nuclear matrix protein associated with induction of mitogenesis, as the nucleolar protein B23: Implication for the role of the nucleolus in early transduction of mitogenic signals. J Biol Chem 263:10608–10612;1988.

    Google Scholar 

  22. Funk WD, Pak DT, Karas RH, Wright WE, Shay JW. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12:2866–2871;1992.

    Google Scholar 

  23. Ghosh AK, Steele R, Meyer K, Ray R, Ray RB. Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J Gen Virol 80:1179–1183;1999.

    Google Scholar 

  24. Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog Nucleic Acid Res Mol Biol 62:109–154;1999.

    Google Scholar 

  25. Hanada K, Song CZ, Yamamoto K, Yano K, Maeda Y, Yamaguchi K, Muramatsu M. RNA polymerase I associated factor 53 binds to the nucleolar transcription factor UBF and functions in specific rDNA transcription. EMBO J 15:2217–2226;1996.

    Google Scholar 

  26. Hannan RD, Cavanaugh A, Hempel WM, Moss T, Rothblum LI. Identification of a mammalian RNA polymerase I holoenzyme containing components of the DNA repair/replication system. Nucleic Acids Res 27:3720–3727;1999.

    Google Scholar 

  27. Hannan RD, Stefanovsky V, Taylor L, Moss T, Rothblum LI. Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: Implications for cardiac hypertrophy. Proc Natl Acad Sci USA 93:8750–8755;1996.

    Google Scholar 

  28. Hayashi J, Aoki H, Kajino K, Moriyama M, Arakawa Y, Hino O. Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology 32:958–961;2000.

    Google Scholar 

  29. Hernandez N. TBP, a universal eukaryotic transcription factor? Genes Dev 7:1291–1308;1993.

    Google Scholar 

  30. Hernandez-Verdun D, Roussel P, Gebrane-Younes J. Emerging concepts of nucleolar assembly. J Cell Sci 115:2265–2270;2002.

    Google Scholar 

  31. Herrera JE, Savkur R, Olson MO. The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res 23:3974–3979;1995.

    Google Scholar 

  32. Hsu YS, Tang FM, Liu WL, Chuang JY, Lai MY, Lin YS. Transcriptional regulation by p53: Functional interactions among multiple regulatory domains. J Biol Chem 270:6966–6974;1995.

    Google Scholar 

  33. Huang R, Wu T, Xu L, Liu A, Ji Y, Hu G. Upstream binding factor up-regulated in hepatocellular carcinoma is related to the survival and cisplatin-sensitivity of cancer cells. FASEB J 16:293–301;2002.

    Google Scholar 

  34. Jacob ST. Regulation of ribosomal gene transcription. Biochem J 306:617–626;1995.

    Google Scholar 

  35. Jacob ST, Ghosh AK. Control of RNA polymerase I-directed transcription: Recent trends. J Cell Biochem Suppl 32–33:41–50;1999.

    Google Scholar 

  36. Jantzen HM, Admon A, Bell SP, Tjian R. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344:830–836;1990.

    Google Scholar 

  37. Jin DY, Wang HL, Zhou Y, Chun AC, Kibler KV, Hou YD, Kung H, Jeang KT. Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation. EMBO J 9:729–740;2000.

    Google Scholar 

  38. Kihm AJ, Hershey JC, Haystead TA, Madsen CS, Owens GK. Phosphorylation of the rRNA transcription factor upstream binding factor promotes its association with TATA binding protein. Proc Natl Acad Sci USA 95:14816–14820;1998.

    Google Scholar 

  39. Lai, MM, Ware CF. Hepatitis C virus core protein: Possible roles in viral pathogenesis. Curr Top Microbiol Immunol 242:117–134;2000.

    Google Scholar 

  40. Learned RM, Learned TK, Haltiner MM, Tjian R. Human rRNA transcription is modulated by the coordinate binding of two factors to an upstream control element. Cell 45:847–857;1986.

    Google Scholar 

  41. Learned RM, Smale ST, Haltiner MM, Tjian R. Regulation of human ribosomal RNA transcription. Proc Natl Acad Sci USA 80:3558–3562;1983.

    Google Scholar 

  42. Leary DJ, Huang S. Regulation of ribosome biogenesis within the nucleolus. FEBS Lett 509:145–150;2001.

    Google Scholar 

  43. Li K, Prow T, Lemon SM, Beard MR. Cellular response to conditional expression of hepatitis C virus core protein in Huh7 cultured human hepatoma cells. Hepatology 35:1237–1246;2002.

    Google Scholar 

  44. Liu X, Miller CW, Koeffler PH, Berk AJ. The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol Cell Biol 13:3291–3300;1993.

    Google Scholar 

  45. Lu W, Lo SY, Chen M, Wu KJ, Fung YK, Ou JH. Activation of p53 tumor suppressor by hepatitis C virus core protein. Virology 264:134–141;1999.

    Google Scholar 

  46. Martin DW, Subler MA, Munoz RM, Brown DR, Deb SP, Deb S. p53 and SV40 T antigen bind to the same region overlapping the conserved domain of the TATA-binding protein. Biochem Biophys Res Commun 195:428–434;1993.

    Google Scholar 

  47. Melese T, Xue Z. The nucleolus: An organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324;1995.

    Google Scholar 

  48. Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters. EMBO J 20:373–382;2001.

    Google Scholar 

  49. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1067;1998.

    Google Scholar 

  50. Moss T, Stefanovsky VY. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog Nucleic Acid Res Mol Biol 50:25–66;1995.

    Google Scholar 

  51. Moss T, Stefanovsky VY. At the center of eukaryotic life. Cell 109:545–548;2002.

    Google Scholar 

  52. O'Mahony DJ, Xie WQ, Smith SD, Singer HA, Rothblum LI. Differential phosphorylation and localization of the transcription factor UBF in vivo in response to serum deprivation: In vitro dephosphorylation of UBF reduces its transactivation properties. J Biol Chem 267:35–38;1992.

    Google Scholar 

  53. Otsuka M, Kato N, Lan KH, Yoshida H, Kato J, Gato T, Shiraori Y, Omata M. Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability. J Biol Chem 275:34122–34130;2000.

    Google Scholar 

  54. Panov KI, Friedrich JK, Zomerdijk JC. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol Cell Biol 21:2641–2649;2001.

    Google Scholar 

  55. Park JS, Yang JM, Min MK. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem Biophys Res Commun 267:581–587;2000.

    Google Scholar 

  56. Paule MR, White RJ. Survey and summary: Transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298;2000.

    Google Scholar 

  57. Qadri I, Maguire HF, Siddiqui A. Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc Natl Acad Sci USA 92:1003–1007;1995.

    Google Scholar 

  58. Ray RB, Ray R. Hepatitis C virus core protein: Intriguing properties and functional relevance. FEMS Microbiol Lett 202:149–156;2001.

    Google Scholar 

  59. Ray RB, Lagging LM, Meyer K, Ray R. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol 70:4438–4443;1996.

    Google Scholar 

  60. Redeer R. Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog Nucleic Acid Res Mol Biol 62:293–327;1999.

    Google Scholar 

  61. Reed KE, Rice CM. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Immunol 242:55–84;2000.

    Google Scholar 

  62. Roeder RG. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21:327–335;1996.

    Google Scholar 

  63. Rubinstein SJ, Hammerle T, Wimmer E, Dasgupta A. Infection of HeLa cells with poliovirus results in modification of a complex that binds to the rRNA promoter. J Virol 66:3062–3068;1992.

    Google Scholar 

  64. Rudloff U, Eberhard D, Grummt I. The conserved core domain of the human TATA binding protein is sufficient to assemble the multisubunit RNA polymerase I-specific transcription factor SL1. Proc Natl Acad Sci USA 91:8229–8233;1994.

    Google Scholar 

  65. Saito I, Miyamura T, Ohbayashi A, Harada H, Katayama T, Kikuchi S, Watanabe Y, Koi S, Onji M, Ohta Y, Choo QL, Houghton M, Kuo G. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci USA 87:6547–6549;1990.

    Google Scholar 

  66. Schmidt-Zachmann MS, Hugle-Dorr B, Franke WW. A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J 6:1881–1890;1987.

    Google Scholar 

  67. Seither P, Iben S, Grummt I. Mammalian RNA polymerase I exists as a holoenzyme with associated basal transcription factors. J Mol Biol 275:43–53;1998.

    Google Scholar 

  68. Shih CM, Chen CM, Chen SY, Lee YHW. Modulation of the trans-suppression activity of hepatitis C virus core protein by phosphorylation. J Virol 69:1160–1171;1995.

    Google Scholar 

  69. Shih CM, Lo SJ, Miyamura T, Chen SY, Lee YHW. Suppression of hepatitis B virus expression and replication by hepatitis C virus core protein in HuH-7 cells. J Virol 67:5823–5832;1993.

    Google Scholar 

  70. Shimotohno K, Watashi K, Tsuchihara K, Fukuda K, Marusawa H, Hijikata M. Hepatitis C virus and its roles in cell proliferation. J Gastroenterol 37(suppl 13):50–54;2002.

    Google Scholar 

  71. Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell 8:1063–1073;2001.

    Google Scholar 

  72. Stein T, Crighton D, Warnock LJ, Milner J, White RJ. Several regions of p53 are involved in repression of RNA polymerase III transcription. Oncogene 21:5540–5547;2002.

    Google Scholar 

  73. Tsuchihara K, Hijikata M, Fukuda K, Kuroki T, Yamamoto N, Shimotohno K. Hepatitis C virus core protein regulates cell growth and signal transduction pathway transmitting growth stimuli. Virology 258:100–107;1999.

    Google Scholar 

  74. Voit R, Grummt I. Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription. Proc Natl Acad Sci USA 98:13631–13636;2001.

    Google Scholar 

  75. Voit R, Hoffmann M, Grummt I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J 18:1891–1899;1999.

    Google Scholar 

  76. Voit R, Kuhn A, Sander EE, Grummt I. Activation of mammalian ribosomal gene transcription requires phosphorylation of the nucleolar transcription factor UBF. Nucleic Acids Res 23:2593–2599;1995.

    Google Scholar 

  77. Voit R, Schnapp A, Kuhn A, Rosenbauer H, Hirschmann P, Stunnenberg HG, Grummt I. The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. EMBO J 11:2211–2218;1992.

    Google Scholar 

  78. Wang HD, Trivedi A, Johnson DL. Regulation of RNA polymerase I-dependent promoters by the hepatitis B virus X protein via activated Ras and TATA-binding protein. Mol Cell Biol 18:7086–7094;1998.

    Google Scholar 

  79. White RJ, Jackson SP. Mechanism of TATA-binding protein recruitment to a TATA-less class III promoter. Cell 71:1041–1053;1992.

    Google Scholar 

  80. Yasui K, Wakita T, Tsukiyama-Kohara K, Funahashi SI, Ichikawa M, Kajita T, Moradpour D, Wands JR, Kohara M. The native form and maturation process of hepatitis C virus core protein. J Virol 72:6048–6055;1998.

    Google Scholar 

  81. Yeh TS, Lo SJ, Chen PJ, Lee YHW. Casein kinase II and protein kinase C modulate hepatitis delta virus RNA replication but not empty viral particle assembly. J Virol 70:6190–6198;1996.

    Google Scholar 

  82. Yoshida T, Hanada T, Tokuhisa T, Kosai K, Sata M, Kohara M, Yoshimura A. Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation. J Exp Med 196:641–653;2002.

    Google Scholar 

  83. You LR, Chen CM, Lee YHW. Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha. J Virol 73:1672–1681;1999.

    Google Scholar 

  84. You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH, Lee YHW. Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 73:2841–2853;1999.

    Google Scholar 

  85. Yung BY, Busch H, Chan PK. Translocation of nucleolar phosphoprotein B23 (37 kDa/pl 5.1) induced by selective inhibitors of ribosome synthesis. Biochim Biophys Acta 826:167–173;1985.

    Google Scholar 

  86. Zemel R, Gerechet S, Greif H, Bachmatove L, Birk Y, Golan-Goldhirsh A, Kunin M, Berdichevsky Y, Benhar I, Tur-Kaspa R. Cell transformation induced by hepatitis C virus NS3 serine protease. J Viral Hepat 8:96–102;2001.

    Google Scholar 

  87. Zhai W, Comai L. A kinase activity associated with simian virus 40 large T antigen phosphorylates upstream binding factor (UBF) and promotes formation of a stable initiation complex between UBF and SL1. Mol Cell Biol 19:2791–2802;1999.

    Google Scholar 

  88. Zhai W, Comai L. Repression of RNA polymerase I transcription by tumor suppressor p53. Mol Cell Biol 20:5930–5938;2000.

    Google Scholar 

  89. Zhai W, Tuan JA, Comai L. SV40 large T antigen binds to the TBP-TAF(I) complex SL1 and coactivates ribosomal RNA transcription. Genes Dev 11:1605–1617;1997.

    Google Scholar 

  90. Zhou Q, Boyer TG, Berk AJ. Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. Genes Dev 7:180–187;1993.

    Google Scholar 

  91. Zomerdijk JC, Beckmann H, Comai L, Tjian R. Assembly of transcriptionally active RNA polymerase I initiation factor SL1 from recombinant subunits. Science 266:2015–2018;1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, CF., Chen, SY. & Wu Lee, YH. Activation of RNA polymerase I transcription by hepatitis C virus core protein. J Biomed Sci 11, 72–94 (2004). https://doi.org/10.1007/BF02256551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256551

Key Words

Navigation