Skip to main content
Log in

Ecogenomics of Geminivirus from India and Neighbor Countries: An In Silico Analysis of Recombination Phenomenon

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Recombination is one of the keys factor in evolutionary processes, involved in shaping the architecture of genomes and consequent phenotype. Understanding the recombination phenomenon especially among viruses will help in disease management. The present study aimed for in-silico analysis of recombination phenomenon among Begomoviruses, particularly emphasizing on viruses strains reported from India and neighboring countries. A total of 956 virus sequences have been used in this study. The Tomato yellow leaf curl China viruses, namely \(\hbox {gi}\vert 29825986\vert ;\hbox { gi}\vert 283468151\vert ; \hbox { gi}\vert 190559151\vert\) and \(\hbox {gi}\vert 61652782\vert\) were identified with the highest number of recombination event (1273). However, the Mung bean yellow mosaic India virus \((\hbox {gi}\vert 66351988\vert )\) was found to have 1170 recombination event. The phylogenic analysis among the highly recombinant sequences was carried to get an insight of the evolution among viral sequences in this class of plant viruses. The phylogenetic analysis revealed a pattern in diversity among these virus strains and a split tree analysis showed diversity in the range of 0.049128335–10.269852. This in silico analysis may pave way for a greater understanding of recombination phenomenon in geminiviruses and it might be helpful for strategic plant viral disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Duffy S, Holmes EC (2008) Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol 82(2):957–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ge LM, Zhang JT, Zhou XP, Li HY (2007) Genetic structure and population variability of Tomato yellow leaf curl China virus. J Virol 81:5902–5907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Posada D, Crandall KA, Holmes EC (2002) Recombination in evolutionary genomics. Annu Rev Genet 36:75–97

    Article  CAS  PubMed  Google Scholar 

  4. Chare ER, Hollmes EC (2006) A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 151(5):933–946

    Article  CAS  PubMed  Google Scholar 

  5. Lefeuvre P, Lett JM, Varsani A, Martin DP (2009) Widely conserved recombination patterns among single-Stranded DNA viruses. J Virol 83(6):2697–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fauquet CM, Stanley J (2003) Geminivirus classification and nomenclature: progress and problems. Ann Appl Biol 142:165–189

    Article  CAS  Google Scholar 

  7. Moflat AS (1999) Plant pathology-geminiviruses emerge as serious crop threat. Science 286:1835

    Article  Google Scholar 

  8. Bird J, Idris AM, Rogan D, Brown JA (2001) Introduction of the exotic tomato yellow leaf curl virus-Israel in tomato to Puerto Rico. plant Dis J 85:1028

    Article  Google Scholar 

  9. Harrison BD, Robinson DJ (1999) Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (Begomoviruses). Annu Rev Phytopathol 37:369–398

    Article  CAS  PubMed  Google Scholar 

  10. Fauquet CM, Sawyer S, Idris AM, Brown JK (2005) Sequence analysis and 6 classification of apparent recombinant begomoviruses infecting tomato in the Nile and Mediterranean basins. Phytopathology 95:549–555

    Article  CAS  PubMed  Google Scholar 

  11. García-Andrés S, Toma’s DM, Sánchez-Campos S, Navas-Castillo J, Moriones E (2007) Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology 365:210–219

    Article  PubMed  Google Scholar 

  12. Bananej K, Kheyr-Pour A, Salekdeh GH, Ahoonmanesh A (2000) Complete nucleotide sequence of Iranian tomato yellow leaf curl virus isolate: further evidence for natural recombination amongst begomoviruses. Arch Virol 149:1435–1443

    Google Scholar 

  13. Monci F, Sa’nchez-Campos S, Navas-Castillo J, Moriones E (2002) A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303:317–326

    Article  CAS  PubMed  Google Scholar 

  14. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminivirus by frequent recombination. Virology 265:218–225. doi:10.1006/viro.1999.0056

    Article  CAS  PubMed  Google Scholar 

  15. Zhou X, Liu Y, Calvert L, Munoz C, Otim-Nape GW, Robinson DJ, Harrison BD (1997) Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78:2101–2111

    Article  CAS  PubMed  Google Scholar 

  16. Fraile A, García-Arenal F (2010) The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res 76:1–32

    Article  CAS  PubMed  Google Scholar 

  17. Morya VK, Yadav S, Kim EK, Yadav D (2012) In silico characterization of alkaline proteases from different species of Aspergillus. Appl Biochem Biotechnol 166(1):243–257

    Article  CAS  PubMed  Google Scholar 

  18. Tamura K, Dudley J, Nei M, Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0

  19. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21(2):260–262

    Article  CAS  PubMed  Google Scholar 

  20. Felsenstein J (1989) PHYLIP manual, version 3.2. University of California Herbarium. Berkeley, California

    Google Scholar 

  21. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) Fast DNA mL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10(1):41–48

    CAS  PubMed  Google Scholar 

  22. Rohayem J, Münch J, Rethwilm A (2005) Evidence of recombination in the norovirus capsid gene. J Virol 79(8):4977–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh AK, Mahinghara BK, Hallan V, Ram R, Zaidi AA (2008) Recombination and phylogeographical analysis of Lily symptomless virus. Virus Genes 36(2):421–427

    Article  CAS  PubMed  Google Scholar 

  24. Posada D (2002) Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19(5):708–717

    Article  CAS  PubMed  Google Scholar 

  25. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Nat Acad Sci USA 98(24):13757–13762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lewis-Rogers N, Crandall KA, Posada D (2004) Evolutionary analyses of genetic recombination. In: Parisi V, De Fonzo V, Aluffi-Pentini F (eds) Dynamical genetics. pp 49–78

  27. Paplomatas EJ, Patel VP, Hou YM, Noueiry AO, Gilbertson RL (1994) Molecular characterization of a new saptransmissible bipartite genome geminivirus infecting tomatoes in Mexico. Phytopathology 84:1215–1224

    Article  CAS  Google Scholar 

  28. Pita JS, Fondong VN, Sangare A, Otim-Nape GW, Ogwal S, Fauquet CM (2001) Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol 82:655–665

    Article  CAS  PubMed  Google Scholar 

  29. Saunders K, Salim N, Mali VR, Malathi VG, Briddon R, Markham PG, Stanley J (2002) Characterization of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293(1):63–74

    Article  CAS  PubMed  Google Scholar 

  30. Unseld S, Ringel M, Höfer P, Höhnle M, Jeske H, Bedford ID, Markham PG, Frischmuth T (2000) Host range and symptom variation of pseudorecombinant virus produced by two distinct bipartite geminiviruses. Arch Virol 145:1449–1454

    Article  CAS  PubMed  Google Scholar 

  31. Seal SE, VandenBosch F, Jeger MJ (2006) Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25:23–46

    Article  Google Scholar 

  32. Van Den Bosch F, Akudibilah F, Seal S, Jeger M (2006) Host resistance and the evolutionary response of plant viruses. J Appl Ecol 43:506–516

    Article  Google Scholar 

  33. Vadivukarasi T, Girish KR, Usha R (2006) Sequence and recombination analyses of the geminivirus replication initiator protein. J Biosci 32(1):17–29

    Article  Google Scholar 

  34. Fondong VN, Pita JS, Rey MEC, de Kochko A, Beachy RN, Fauquet CM (2000) Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J Gen Virol 81:287–297

    Article  CAS  PubMed  Google Scholar 

  35. Prassana HC, Rai M (2007) Detection and frequency of recombination in tomato-infecting begomoviruses of South and Southeast Asia. Virol J 4:111

    Article  Google Scholar 

  36. Howarth AJ, Vandemark GJ (1989) Phylogeny of geminiviruses. J Gen Virol 70:2717–2727

    Article  CAS  PubMed  Google Scholar 

  37. Harrison BD (1985) Advances in geminivirus research. Annu Rev Phytopathol 23:55–83

    Article  CAS  Google Scholar 

  38. Hasiów-Jaroszewska B, Kuzniar A, Peters AS, Leunissen JAM, Pospieszny H (2010) Evidence for RNA recombination between distinct isolates of Pepino mosaic virus. Acta Biochim Pol 57(3):385–388

    PubMed  Google Scholar 

  39. Holland JDE (1998) Origin and evolution of viruses. Virus Genes 16:13–41

    Article  CAS  PubMed  Google Scholar 

  40. Keese P, Gibbs A (1993) Plant viruses: master explorers of evolutionary space. Curr Opin Genet Dev 3:873–877

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors V. K. Morya and Birendra K. Singh are thankful to Inha University, Incheon, South Korea; however, Yachna Singh and G. Thomas are thankful to Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, India, for providing necessary environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morya, V.K., Singh, Y., Singh, B.K. et al. Ecogenomics of Geminivirus from India and Neighbor Countries: An In Silico Analysis of Recombination Phenomenon. Interdiscip Sci Comput Life Sci 7, 168–176 (2015). https://doi.org/10.1007/s12539-015-0020-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-015-0020-3

Keywords

Navigation