Skip to main content
Log in

Mutation effects on structural stability of polyglutamine peptides by molecular dynamics simulation

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Huntington’s disease patients commonly have glutamine (Q) repeats longer than 37 residues in the Huntingtin protein. This unusual protein will misfold and aggregate to form insoluble amyloid-like fibrils. Although the determination of polyQ structure is very important for elucidation of the aggregation mechanism, this has not yet been accomplished due to the experimental difficulties. In this study, we performed in silico mutation analysis to examine the stability of polyQ peptide on the basis of the β-helix structure which is known as a possible model. From the results of molecular dynamics simulations for 10ns, some mutant models were found to be unstable, and their stabilities were largely dependent on the position of replaced residues. Besides, to examine the relationship between the aggregation mechanism of polyQ and the stability of the corresponding monomer, we constructed trimer models. Through the trimer studies, we confirmed that the stability of the monomer contributes significantly to that of the oligomer, and found that some mutant polyQs have the ability to inhibit polyQ aggregation. Furthermore, we estimated the free energies in solution and the conformational entropic contributions with normal mode analysis. The entropic contributions were not exhibiting remarkable differences between the models under study compared to the differences in the free energies in solution. Supposing that the stability of monomer is associated with aggregation process, the β-helix structure has been found to be somewhat inconsistent with the experimental results in this study. Our results thus indicate the necessity for the revalidation of the β-helix model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

polyQ:

polyglutamine

MD:

molecular dynamics

MOE:

Molecular Operating Environment

PBC:

periodic boundary condition

RMSD:

root mean square deviation

RMSF:

root mean square fluctuation

WT:

wildtype

PG pair:

Pro-Gly pair

References

  1. Bevivino, A.E., Loll, P.J 2001. An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation parallel beta-fibrils. In: Proceedings of the National Academy of Sciences of the United States of America 98, 11955–11960.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, S., Berthelier, V., Hamilton, J.B., O’Nuallain, B., Wetzel, R 2002. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391–7399.

    Article  PubMed  CAS  Google Scholar 

  3. Connolly, M.L. 1983. Analytical molecular surface calculation. Journal of Applied Crystallography 16, 548–558.

    Article  CAS  Google Scholar 

  4. Cooper, J.K., Schilling, G., Peters, M.F., Herring, W.J., Sharp, A.H., Kaminsky, Z., Masone, J., Khan, F.A., Delanoy, M., Borchelt, D.R., Dawson, V.L., Dawson, T.M., Ross, C.A. 1998. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Human Molecular Genetics 7, 783–790.

    Article  PubMed  CAS  Google Scholar 

  5. de Cristofaro, T., Affaitati, A., Cariello, L., Avvedimento, E.V., Varrone, S. 1999. The length of polyglutamine tract, its level of expression, the rate of degradation, and the transglutaminase activity influence the formation of intracellular aggregates. Biochemical and Biophysical Research Communications 260, 150–158.

    Article  PubMed  Google Scholar 

  6. Elliott, J., Starikov, E.B., Crawshaw, J., Claiden, P., Nilsson, L., Windle, A 2006. Nucleation of polyglutamine amyloid fibres modelling using molecular dynamics. In: Starikov, E., Lewis, J., Tanaka, S. (eds) Modern Methods for Theoretical Physical Chemistry of Biopolymers. Elsevier BV, Amsterdam, The Netherlands, 211–216.

    Chapter  Google Scholar 

  7. Georgalis, Y., Starikov, E.B., Hollenbach, B., Lurz, R., Scherzinger, E., Saenger, W., Lehrach, H., Wanker, E.E. 1998. Huntingtin aggregation monitored by dynamic light scattering. In: Proceedings of the National Academy of Sciences of the United States of America 95, 6118–6121.

    Article  PubMed  CAS  Google Scholar 

  8. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L. 1983. Comparison of simple potential functions for simulation liquid water. The Journal of Chemical Physics 79, 926–935.

    Article  CAS  Google Scholar 

  9. Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., Cheatham, T.E. III 2000. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research 33, 889–897.

    Article  PubMed  CAS  Google Scholar 

  10. MacDonald, M.E. et al. (The Huntington’s Disease Collaborative Research Group). 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  11. Merlino, A., Esposito, L., Vitagliano, L 2006. Polyglutamine repeats and β-helix structure: Molecular dynamics study. Proteins 63, 918–927.

    Article  PubMed  CAS  Google Scholar 

  12. Molecular Operating Environment, 2006. Chemical Computing Group, Montreal, Canada.

    Google Scholar 

  13. Ogawa, H., Nakano, M., Watanabe, H., Starikov, E.B., Rothstein, S.M., Tanaka, S 2008. Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides. Computational Biology and Chemistry 32, 102–110.

    Article  PubMed  CAS  Google Scholar 

  14. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E. III, DeBolt, S., Ferguson, D., Seibel, G., Kollman, P. 1995. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications 91, 1–41.

    Article  CAS  Google Scholar 

  15. Perutz, M.F., Johnson, T., Suzuki, M., Finch, J.T. 1994. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. In: Proceedings of the National Academy of Sciences of the United States of America 91, 5355–5358.

    Article  PubMed  CAS  Google Scholar 

  16. Perutz, M.F., Finch, J.T., Berriman, J., Lesk, A 2002. Amyloid fibers are water-filled nanotubes. In: Proceedings of the National Academy of Sciences of the United States of America 99, 5591–5595.

    Article  PubMed  CAS  Google Scholar 

  17. PyMOL viewer v0.99. DeLano Scientific LLC, South San Francisco, USA

  18. Rubinsztein, D.C., Leggo, J., Coles, R., Almqvist, E., Biancalana, V., Cassiman, J.J., Chotai, K., Connarty, M., Crauford, D., Curtis, A., Curtis, D., Davidson, M.J., Differ, A.M., Dode, C., Dodge, A., Frontali, M., Ranen, N.G., Stine, O.C., Sherr, M., Abbott, M.H., Franz, M.L., Graham, C.A., Harper, P.S., Hedreen, J.C., Jackson, A., Kaplan, J.C., Losekoot, M., MacMillan, J.C., Morrison, P., Trottier, Y., Novelletto, A., Simpson, S.A., Theilmann, J., Whittaker, J.L., Folstein, S.E., Ross, C.A., Hayden, M.R. 1996. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. American Journal of Human Genetics 59, 16–22.

    PubMed  CAS  Google Scholar 

  19. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H., Wanker, E.E. 1997. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558.

    Article  PubMed  CAS  Google Scholar 

  20. Sharma, D., Sharma, S., Pasha, S., Brahmachari, S.K. 1999. Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Letters 456, 181–185.

    Article  PubMed  CAS  Google Scholar 

  21. Sharma, D., Shinchuk, L.M., Inouye, H., Wetzel, R., Kirschner, D.A 2005. Polyglutamine homopolymers having 8-45 residues form slablike beta-crystallite assemblies. Proteins 61, 398–411.

    Article  PubMed  CAS  Google Scholar 

  22. Sikorski, P., Atkins, E 2005. New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules 6, 425–432.

    Article  PubMed  CAS  Google Scholar 

  23. Singer, S.J., Dewji, N.N 2006. Evidence that Perutz’s double-beta-stranded subunit structure for betaamyloids also applies to their channel-forming structures in membranes. In: Proceedings of the National Academy of Sciences of the United States of America 103, 1546–1550.

    Article  PubMed  CAS  Google Scholar 

  24. Srinivasan, J., Cheatham, T.E. III, Cieplak, P., Kollman, P.A., Case, D.A. 1998. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. Journal of the American Chemical Society 120, 9401–9409.

    Article  CAS  Google Scholar 

  25. Stork, M., Giese, A., Kretzschmar, H.A., Tavan, P 2005. Molecular dynamics simulations indicate a possible role of parallel beta-helices in seeded aggregation of poly-Gln. Biophysical Journal 88, 2442–2451.

    Article  PubMed  CAS  Google Scholar 

  26. Suhre, K., Sanejouand, Y.H 2004. ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Reserch 32, W610–614. doi:10.1093/nar/gkh368.

    Article  CAS  Google Scholar 

  27. Taiji, M 2004. MDGRAPE-3 chip: a 165 Gflops Application Specific LSI for Molecular Dynamics Simulations. In: Proceedings of Hot Chips 16 in CD-ROM, IEEE Computer Society.

  28. Tanaka, M., Morishima, I., Akagi, T., Hashikawa, T., Nukina, N 2001. Intra- and intermolecular -pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. The Journal of Biological Chemistry 276, 45470–45475.

    Article  PubMed  CAS  Google Scholar 

  29. Thakur, A.K., Wetzel, R 2002. Mutational analysis of the structural organization of polyglutamine aggregates. In: Proceedings of the National Academy of Sciences of the United States of America 99, 17014–17019.

    Article  PubMed  CAS  Google Scholar 

  30. Thakur, A.K., Yang, W., Wetzel, R 2004. Inhibition of polyglutamine aggregate cytotoxicity by a structurebased elongation inhibitor. The FASEB Journal 18, 923–925.

    PubMed  CAS  Google Scholar 

  31. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J 2005. GROMACS: fast, flexible, and free. Journal of Computational Chemistry 26, 1701–1718.

    Article  CAS  Google Scholar 

  32. Wang, J.M., Cieplak, P., Kollman, P.A 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry 21, 1049–1074.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Nakano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, M., Watanabe, H., Starikov, E. et al. Mutation effects on structural stability of polyglutamine peptides by molecular dynamics simulation. Interdiscip Sci Comput Life Sci 1, 21–29 (2009). https://doi.org/10.1007/s12539-008-0020-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-008-0020-7

Key words

Navigation